Solve for x
x = -\frac{27}{20} = -1\frac{7}{20} = -1.35
Graph
Share
Copied to clipboard
\frac{2}{3}x+\frac{9}{7}x+\frac{9}{7}=x
Use the distributive property to multiply \frac{9}{7} by x+1.
\frac{41}{21}x+\frac{9}{7}=x
Combine \frac{2}{3}x and \frac{9}{7}x to get \frac{41}{21}x.
\frac{41}{21}x+\frac{9}{7}-x=0
Subtract x from both sides.
\frac{20}{21}x+\frac{9}{7}=0
Combine \frac{41}{21}x and -x to get \frac{20}{21}x.
\frac{20}{21}x=-\frac{9}{7}
Subtract \frac{9}{7} from both sides. Anything subtracted from zero gives its negation.
x=-\frac{9}{7}\times \frac{21}{20}
Multiply both sides by \frac{21}{20}, the reciprocal of \frac{20}{21}.
x=\frac{-9\times 21}{7\times 20}
Multiply -\frac{9}{7} times \frac{21}{20} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-189}{140}
Do the multiplications in the fraction \frac{-9\times 21}{7\times 20}.
x=-\frac{27}{20}
Reduce the fraction \frac{-189}{140} to lowest terms by extracting and canceling out 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}