Solve for x
x=-\frac{14}{45}\approx -0.311111111
Graph
Share
Copied to clipboard
\frac{2}{3}-8x+\frac{1}{2}x=3
Add \frac{1}{2}x to both sides.
\frac{2}{3}-\frac{15}{2}x=3
Combine -8x and \frac{1}{2}x to get -\frac{15}{2}x.
-\frac{15}{2}x=3-\frac{2}{3}
Subtract \frac{2}{3} from both sides.
-\frac{15}{2}x=\frac{9}{3}-\frac{2}{3}
Convert 3 to fraction \frac{9}{3}.
-\frac{15}{2}x=\frac{9-2}{3}
Since \frac{9}{3} and \frac{2}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{15}{2}x=\frac{7}{3}
Subtract 2 from 9 to get 7.
x=\frac{7}{3}\left(-\frac{2}{15}\right)
Multiply both sides by -\frac{2}{15}, the reciprocal of -\frac{15}{2}.
x=\frac{7\left(-2\right)}{3\times 15}
Multiply \frac{7}{3} times -\frac{2}{15} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-14}{45}
Do the multiplications in the fraction \frac{7\left(-2\right)}{3\times 15}.
x=-\frac{14}{45}
Fraction \frac{-14}{45} can be rewritten as -\frac{14}{45} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}