Solve for x
x\leq \frac{1}{3}
Graph
Share
Copied to clipboard
\frac{2}{3}-\frac{1}{2}x-x\geq \frac{1}{6}
Subtract x from both sides.
\frac{2}{3}-\frac{3}{2}x\geq \frac{1}{6}
Combine -\frac{1}{2}x and -x to get -\frac{3}{2}x.
-\frac{3}{2}x\geq \frac{1}{6}-\frac{2}{3}
Subtract \frac{2}{3} from both sides.
-\frac{3}{2}x\geq \frac{1}{6}-\frac{4}{6}
Least common multiple of 6 and 3 is 6. Convert \frac{1}{6} and \frac{2}{3} to fractions with denominator 6.
-\frac{3}{2}x\geq \frac{1-4}{6}
Since \frac{1}{6} and \frac{4}{6} have the same denominator, subtract them by subtracting their numerators.
-\frac{3}{2}x\geq \frac{-3}{6}
Subtract 4 from 1 to get -3.
-\frac{3}{2}x\geq -\frac{1}{2}
Reduce the fraction \frac{-3}{6} to lowest terms by extracting and canceling out 3.
x\leq -\frac{1}{2}\left(-\frac{2}{3}\right)
Multiply both sides by -\frac{2}{3}, the reciprocal of -\frac{3}{2}. Since -\frac{3}{2} is negative, the inequality direction is changed.
x\leq \frac{-\left(-2\right)}{2\times 3}
Multiply -\frac{1}{2} times -\frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
x\leq \frac{2}{6}
Do the multiplications in the fraction \frac{-\left(-2\right)}{2\times 3}.
x\leq \frac{1}{3}
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}