Evaluate
-\frac{4}{21}\approx -0.19047619
Factor
-\frac{4}{21} = -0.19047619047619047
Share
Copied to clipboard
\frac{2}{3}-\frac{\frac{1}{2}}{\frac{9}{12}-\frac{2}{12}}
Least common multiple of 4 and 6 is 12. Convert \frac{3}{4} and \frac{1}{6} to fractions with denominator 12.
\frac{2}{3}-\frac{\frac{1}{2}}{\frac{9-2}{12}}
Since \frac{9}{12} and \frac{2}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{3}-\frac{\frac{1}{2}}{\frac{7}{12}}
Subtract 2 from 9 to get 7.
\frac{2}{3}-\frac{1}{2}\times \frac{12}{7}
Divide \frac{1}{2} by \frac{7}{12} by multiplying \frac{1}{2} by the reciprocal of \frac{7}{12}.
\frac{2}{3}-\frac{1\times 12}{2\times 7}
Multiply \frac{1}{2} times \frac{12}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{3}-\frac{12}{14}
Do the multiplications in the fraction \frac{1\times 12}{2\times 7}.
\frac{2}{3}-\frac{6}{7}
Reduce the fraction \frac{12}{14} to lowest terms by extracting and canceling out 2.
\frac{14}{21}-\frac{18}{21}
Least common multiple of 3 and 7 is 21. Convert \frac{2}{3} and \frac{6}{7} to fractions with denominator 21.
\frac{14-18}{21}
Since \frac{14}{21} and \frac{18}{21} have the same denominator, subtract them by subtracting their numerators.
-\frac{4}{21}
Subtract 18 from 14 to get -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}