Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2}{3}\left(x+5\right)\times 12\left(5x-3\right)=3
Variable x cannot be equal to \frac{3}{5} since division by zero is not defined. Multiply both sides of the equation by 12\left(5x-3\right), the least common multiple of 3,4\left(5x-3\right).
8\left(x+5\right)\left(5x-3\right)=3
Multiply \frac{2}{3} and 12 to get 8.
\left(8x+40\right)\left(5x-3\right)=3
Use the distributive property to multiply 8 by x+5.
40x^{2}+176x-120=3
Use the distributive property to multiply 8x+40 by 5x-3 and combine like terms.
40x^{2}+176x-120-3=0
Subtract 3 from both sides.
40x^{2}+176x-123=0
Subtract 3 from -120 to get -123.
x=\frac{-176±\sqrt{176^{2}-4\times 40\left(-123\right)}}{2\times 40}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 40 for a, 176 for b, and -123 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-176±\sqrt{30976-4\times 40\left(-123\right)}}{2\times 40}
Square 176.
x=\frac{-176±\sqrt{30976-160\left(-123\right)}}{2\times 40}
Multiply -4 times 40.
x=\frac{-176±\sqrt{30976+19680}}{2\times 40}
Multiply -160 times -123.
x=\frac{-176±\sqrt{50656}}{2\times 40}
Add 30976 to 19680.
x=\frac{-176±4\sqrt{3166}}{2\times 40}
Take the square root of 50656.
x=\frac{-176±4\sqrt{3166}}{80}
Multiply 2 times 40.
x=\frac{4\sqrt{3166}-176}{80}
Now solve the equation x=\frac{-176±4\sqrt{3166}}{80} when ± is plus. Add -176 to 4\sqrt{3166}.
x=\frac{\sqrt{3166}}{20}-\frac{11}{5}
Divide -176+4\sqrt{3166} by 80.
x=\frac{-4\sqrt{3166}-176}{80}
Now solve the equation x=\frac{-176±4\sqrt{3166}}{80} when ± is minus. Subtract 4\sqrt{3166} from -176.
x=-\frac{\sqrt{3166}}{20}-\frac{11}{5}
Divide -176-4\sqrt{3166} by 80.
x=\frac{\sqrt{3166}}{20}-\frac{11}{5} x=-\frac{\sqrt{3166}}{20}-\frac{11}{5}
The equation is now solved.
\frac{2}{3}\left(x+5\right)\times 12\left(5x-3\right)=3
Variable x cannot be equal to \frac{3}{5} since division by zero is not defined. Multiply both sides of the equation by 12\left(5x-3\right), the least common multiple of 3,4\left(5x-3\right).
8\left(x+5\right)\left(5x-3\right)=3
Multiply \frac{2}{3} and 12 to get 8.
\left(8x+40\right)\left(5x-3\right)=3
Use the distributive property to multiply 8 by x+5.
40x^{2}+176x-120=3
Use the distributive property to multiply 8x+40 by 5x-3 and combine like terms.
40x^{2}+176x=3+120
Add 120 to both sides.
40x^{2}+176x=123
Add 3 and 120 to get 123.
\frac{40x^{2}+176x}{40}=\frac{123}{40}
Divide both sides by 40.
x^{2}+\frac{176}{40}x=\frac{123}{40}
Dividing by 40 undoes the multiplication by 40.
x^{2}+\frac{22}{5}x=\frac{123}{40}
Reduce the fraction \frac{176}{40} to lowest terms by extracting and canceling out 8.
x^{2}+\frac{22}{5}x+\left(\frac{11}{5}\right)^{2}=\frac{123}{40}+\left(\frac{11}{5}\right)^{2}
Divide \frac{22}{5}, the coefficient of the x term, by 2 to get \frac{11}{5}. Then add the square of \frac{11}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{22}{5}x+\frac{121}{25}=\frac{123}{40}+\frac{121}{25}
Square \frac{11}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{22}{5}x+\frac{121}{25}=\frac{1583}{200}
Add \frac{123}{40} to \frac{121}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{11}{5}\right)^{2}=\frac{1583}{200}
Factor x^{2}+\frac{22}{5}x+\frac{121}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{5}\right)^{2}}=\sqrt{\frac{1583}{200}}
Take the square root of both sides of the equation.
x+\frac{11}{5}=\frac{\sqrt{3166}}{20} x+\frac{11}{5}=-\frac{\sqrt{3166}}{20}
Simplify.
x=\frac{\sqrt{3166}}{20}-\frac{11}{5} x=-\frac{\sqrt{3166}}{20}-\frac{11}{5}
Subtract \frac{11}{5} from both sides of the equation.