Solve for x
x=-\frac{3}{4}=-0.75
Graph
Share
Copied to clipboard
\frac{2}{3}\times 9+\frac{2}{3}\left(-6\right)x=4\left(x+3\right)
Use the distributive property to multiply \frac{2}{3} by 9-6x.
\frac{2\times 9}{3}+\frac{2}{3}\left(-6\right)x=4\left(x+3\right)
Express \frac{2}{3}\times 9 as a single fraction.
\frac{18}{3}+\frac{2}{3}\left(-6\right)x=4\left(x+3\right)
Multiply 2 and 9 to get 18.
6+\frac{2}{3}\left(-6\right)x=4\left(x+3\right)
Divide 18 by 3 to get 6.
6+\frac{2\left(-6\right)}{3}x=4\left(x+3\right)
Express \frac{2}{3}\left(-6\right) as a single fraction.
6+\frac{-12}{3}x=4\left(x+3\right)
Multiply 2 and -6 to get -12.
6-4x=4\left(x+3\right)
Divide -12 by 3 to get -4.
6-4x=4x+12
Use the distributive property to multiply 4 by x+3.
6-4x-4x=12
Subtract 4x from both sides.
6-8x=12
Combine -4x and -4x to get -8x.
-8x=12-6
Subtract 6 from both sides.
-8x=6
Subtract 6 from 12 to get 6.
x=\frac{6}{-8}
Divide both sides by -8.
x=-\frac{3}{4}
Reduce the fraction \frac{6}{-8} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}