Solve for x
x=-\frac{3}{4}=-0.75
Graph
Share
Copied to clipboard
4\left(\frac{1}{3}x-\frac{1}{2}\right)=24x+3\left(2\times 2+1\right)
Multiply both sides of the equation by 6, the least common multiple of 3,2.
4\times \frac{1}{3}x+4\left(-\frac{1}{2}\right)=24x+3\left(2\times 2+1\right)
Use the distributive property to multiply 4 by \frac{1}{3}x-\frac{1}{2}.
\frac{4}{3}x+4\left(-\frac{1}{2}\right)=24x+3\left(2\times 2+1\right)
Multiply 4 and \frac{1}{3} to get \frac{4}{3}.
\frac{4}{3}x+\frac{4\left(-1\right)}{2}=24x+3\left(2\times 2+1\right)
Express 4\left(-\frac{1}{2}\right) as a single fraction.
\frac{4}{3}x+\frac{-4}{2}=24x+3\left(2\times 2+1\right)
Multiply 4 and -1 to get -4.
\frac{4}{3}x-2=24x+3\left(2\times 2+1\right)
Divide -4 by 2 to get -2.
\frac{4}{3}x-2=24x+3\left(4+1\right)
Multiply 2 and 2 to get 4.
\frac{4}{3}x-2=24x+3\times 5
Add 4 and 1 to get 5.
\frac{4}{3}x-2=24x+15
Multiply 3 and 5 to get 15.
\frac{4}{3}x-2-24x=15
Subtract 24x from both sides.
-\frac{68}{3}x-2=15
Combine \frac{4}{3}x and -24x to get -\frac{68}{3}x.
-\frac{68}{3}x=15+2
Add 2 to both sides.
-\frac{68}{3}x=17
Add 15 and 2 to get 17.
x=17\left(-\frac{3}{68}\right)
Multiply both sides by -\frac{3}{68}, the reciprocal of -\frac{68}{3}.
x=\frac{17\left(-3\right)}{68}
Express 17\left(-\frac{3}{68}\right) as a single fraction.
x=\frac{-51}{68}
Multiply 17 and -3 to get -51.
x=-\frac{3}{4}
Reduce the fraction \frac{-51}{68} to lowest terms by extracting and canceling out 17.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}