Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2}{3}x^{2}-\frac{1}{3}x=4
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
\frac{2}{3}x^{2}-\frac{1}{3}x-4=4-4
Subtract 4 from both sides of the equation.
\frac{2}{3}x^{2}-\frac{1}{3}x-4=0
Subtracting 4 from itself leaves 0.
x=\frac{-\left(-\frac{1}{3}\right)±\sqrt{\left(-\frac{1}{3}\right)^{2}-4\times \frac{2}{3}\left(-4\right)}}{2\times \frac{2}{3}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{2}{3} for a, -\frac{1}{3} for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{1}{3}\right)±\sqrt{\frac{1}{9}-4\times \frac{2}{3}\left(-4\right)}}{2\times \frac{2}{3}}
Square -\frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{1}{3}\right)±\sqrt{\frac{1}{9}-\frac{8}{3}\left(-4\right)}}{2\times \frac{2}{3}}
Multiply -4 times \frac{2}{3}.
x=\frac{-\left(-\frac{1}{3}\right)±\sqrt{\frac{1}{9}+\frac{32}{3}}}{2\times \frac{2}{3}}
Multiply -\frac{8}{3} times -4.
x=\frac{-\left(-\frac{1}{3}\right)±\sqrt{\frac{97}{9}}}{2\times \frac{2}{3}}
Add \frac{1}{9} to \frac{32}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{1}{3}\right)±\frac{\sqrt{97}}{3}}{2\times \frac{2}{3}}
Take the square root of \frac{97}{9}.
x=\frac{\frac{1}{3}±\frac{\sqrt{97}}{3}}{2\times \frac{2}{3}}
The opposite of -\frac{1}{3} is \frac{1}{3}.
x=\frac{\frac{1}{3}±\frac{\sqrt{97}}{3}}{\frac{4}{3}}
Multiply 2 times \frac{2}{3}.
x=\frac{\sqrt{97}+1}{\frac{4}{3}\times 3}
Now solve the equation x=\frac{\frac{1}{3}±\frac{\sqrt{97}}{3}}{\frac{4}{3}} when ± is plus. Add \frac{1}{3} to \frac{\sqrt{97}}{3}.
x=\frac{\sqrt{97}+1}{4}
Divide \frac{1+\sqrt{97}}{3} by \frac{4}{3} by multiplying \frac{1+\sqrt{97}}{3} by the reciprocal of \frac{4}{3}.
x=\frac{1-\sqrt{97}}{\frac{4}{3}\times 3}
Now solve the equation x=\frac{\frac{1}{3}±\frac{\sqrt{97}}{3}}{\frac{4}{3}} when ± is minus. Subtract \frac{\sqrt{97}}{3} from \frac{1}{3}.
x=\frac{1-\sqrt{97}}{4}
Divide \frac{1-\sqrt{97}}{3} by \frac{4}{3} by multiplying \frac{1-\sqrt{97}}{3} by the reciprocal of \frac{4}{3}.
x=\frac{\sqrt{97}+1}{4} x=\frac{1-\sqrt{97}}{4}
The equation is now solved.
\frac{2}{3}x^{2}-\frac{1}{3}x=4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{2}{3}x^{2}-\frac{1}{3}x}{\frac{2}{3}}=\frac{4}{\frac{2}{3}}
Divide both sides of the equation by \frac{2}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{\frac{1}{3}}{\frac{2}{3}}\right)x=\frac{4}{\frac{2}{3}}
Dividing by \frac{2}{3} undoes the multiplication by \frac{2}{3}.
x^{2}-\frac{1}{2}x=\frac{4}{\frac{2}{3}}
Divide -\frac{1}{3} by \frac{2}{3} by multiplying -\frac{1}{3} by the reciprocal of \frac{2}{3}.
x^{2}-\frac{1}{2}x=6
Divide 4 by \frac{2}{3} by multiplying 4 by the reciprocal of \frac{2}{3}.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=6+\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{2}x+\frac{1}{16}=6+\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{97}{16}
Add 6 to \frac{1}{16}.
\left(x-\frac{1}{4}\right)^{2}=\frac{97}{16}
Factor x^{2}-\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{97}{16}}
Take the square root of both sides of the equation.
x-\frac{1}{4}=\frac{\sqrt{97}}{4} x-\frac{1}{4}=-\frac{\sqrt{97}}{4}
Simplify.
x=\frac{\sqrt{97}+1}{4} x=\frac{1-\sqrt{97}}{4}
Add \frac{1}{4} to both sides of the equation.