Evaluate
-\frac{5\sqrt{3}}{18}\approx -0.481125224
Share
Copied to clipboard
\frac{2}{3}\times \frac{\sqrt{1}}{\sqrt{3}}+\frac{1}{2}\sqrt{48}-\sqrt{\frac{75}{4}}
Rewrite the square root of the division \sqrt{\frac{1}{3}} as the division of square roots \frac{\sqrt{1}}{\sqrt{3}}.
\frac{2}{3}\times \frac{1}{\sqrt{3}}+\frac{1}{2}\sqrt{48}-\sqrt{\frac{75}{4}}
Calculate the square root of 1 and get 1.
\frac{2}{3}\times \frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\frac{1}{2}\sqrt{48}-\sqrt{\frac{75}{4}}
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{2}{3}\times \frac{\sqrt{3}}{3}+\frac{1}{2}\sqrt{48}-\sqrt{\frac{75}{4}}
The square of \sqrt{3} is 3.
\frac{2\sqrt{3}}{3\times 3}+\frac{1}{2}\sqrt{48}-\sqrt{\frac{75}{4}}
Multiply \frac{2}{3} times \frac{\sqrt{3}}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{2\sqrt{3}}{3\times 3}+\frac{1}{2}\times 4\sqrt{3}-\sqrt{\frac{75}{4}}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
\frac{2\sqrt{3}}{3\times 3}+\frac{4}{2}\sqrt{3}-\sqrt{\frac{75}{4}}
Multiply \frac{1}{2} and 4 to get \frac{4}{2}.
\frac{2\sqrt{3}}{3\times 3}+2\sqrt{3}-\sqrt{\frac{75}{4}}
Divide 4 by 2 to get 2.
\frac{2\sqrt{3}}{3\times 3}+2\sqrt{3}-\frac{\sqrt{75}}{\sqrt{4}}
Rewrite the square root of the division \sqrt{\frac{75}{4}} as the division of square roots \frac{\sqrt{75}}{\sqrt{4}}.
\frac{2\sqrt{3}}{3\times 3}+2\sqrt{3}-\frac{5\sqrt{3}}{\sqrt{4}}
Factor 75=5^{2}\times 3. Rewrite the square root of the product \sqrt{5^{2}\times 3} as the product of square roots \sqrt{5^{2}}\sqrt{3}. Take the square root of 5^{2}.
\frac{2\sqrt{3}}{3\times 3}+2\sqrt{3}-\frac{5\sqrt{3}}{2}
Calculate the square root of 4 and get 2.
\frac{2\sqrt{3}}{3\times 3}+\frac{2\sqrt{3}\times 3\times 3}{3\times 3}-\frac{5\sqrt{3}}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2\sqrt{3} times \frac{3\times 3}{3\times 3}.
\frac{2\sqrt{3}+2\sqrt{3}\times 3\times 3}{3\times 3}-\frac{5\sqrt{3}}{2}
Since \frac{2\sqrt{3}}{3\times 3} and \frac{2\sqrt{3}\times 3\times 3}{3\times 3} have the same denominator, add them by adding their numerators.
\frac{2\sqrt{3}+18\sqrt{3}}{3\times 3}-\frac{5\sqrt{3}}{2}
Do the multiplications in 2\sqrt{3}+2\sqrt{3}\times 3\times 3.
\frac{20\sqrt{3}}{3\times 3}-\frac{5\sqrt{3}}{2}
Do the calculations in 2\sqrt{3}+18\sqrt{3}.
\frac{2\times 20\sqrt{3}}{18}-\frac{9\times 5\sqrt{3}}{18}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\times 3 and 2 is 18. Multiply \frac{20\sqrt{3}}{3\times 3} times \frac{2}{2}. Multiply \frac{5\sqrt{3}}{2} times \frac{9}{9}.
\frac{2\times 20\sqrt{3}-9\times 5\sqrt{3}}{18}
Since \frac{2\times 20\sqrt{3}}{18} and \frac{9\times 5\sqrt{3}}{18} have the same denominator, subtract them by subtracting their numerators.
\frac{40\sqrt{3}-45\sqrt{3}}{18}
Do the multiplications in 2\times 20\sqrt{3}-9\times 5\sqrt{3}.
\frac{-5\sqrt{3}}{18}
Do the calculations in 40\sqrt{3}-45\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}