Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2}{3}x+\frac{2}{3}\left(-1\right)+\frac{2}{3}\left(-\frac{x-2}{3}\right)+1=x
Use the distributive property to multiply \frac{2}{3} by x-1-\frac{x-2}{3}.
\frac{2}{3}x-\frac{2}{3}+\frac{2}{3}\left(-\frac{x-2}{3}\right)+1=x
Multiply \frac{2}{3} and -1 to get -\frac{2}{3}.
\frac{2}{3}x-\frac{2}{3}+\frac{-2\left(x-2\right)}{3\times 3}+1=x
Multiply \frac{2}{3} times -\frac{x-2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{3}x-\frac{2\times 3}{3\times 3}+\frac{-2\left(x-2\right)}{3\times 3}+1=x
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 3\times 3 is 3\times 3. Multiply \frac{2}{3} times \frac{3}{3}.
\frac{2}{3}x+\frac{-2\times 3-2\left(x-2\right)}{3\times 3}+1=x
Since -\frac{2\times 3}{3\times 3} and \frac{-2\left(x-2\right)}{3\times 3} have the same denominator, add them by adding their numerators.
\frac{2}{3}x+\frac{-6-2x+4}{3\times 3}+1=x
Do the multiplications in -2\times 3-2\left(x-2\right).
\frac{2}{3}x+\frac{-2-2x}{3\times 3}+1=x
Combine like terms in -6-2x+4.
\frac{2}{3}x+\frac{-2-2x}{9}+1=x
Multiply 3 and 3 to get 9.
\frac{2}{3}x-\frac{2}{9}-\frac{2}{9}x+1=x
Divide each term of -2-2x by 9 to get -\frac{2}{9}-\frac{2}{9}x.
\frac{4}{9}x-\frac{2}{9}+1=x
Combine \frac{2}{3}x and -\frac{2}{9}x to get \frac{4}{9}x.
\frac{4}{9}x-\frac{2}{9}+\frac{9}{9}=x
Convert 1 to fraction \frac{9}{9}.
\frac{4}{9}x+\frac{-2+9}{9}=x
Since -\frac{2}{9} and \frac{9}{9} have the same denominator, add them by adding their numerators.
\frac{4}{9}x+\frac{7}{9}=x
Add -2 and 9 to get 7.
\frac{4}{9}x+\frac{7}{9}-x=0
Subtract x from both sides.
-\frac{5}{9}x+\frac{7}{9}=0
Combine \frac{4}{9}x and -x to get -\frac{5}{9}x.
-\frac{5}{9}x=-\frac{7}{9}
Subtract \frac{7}{9} from both sides. Anything subtracted from zero gives its negation.
x=-\frac{7}{9}\left(-\frac{9}{5}\right)
Multiply both sides by -\frac{9}{5}, the reciprocal of -\frac{5}{9}.
x=\frac{-7\left(-9\right)}{9\times 5}
Multiply -\frac{7}{9} times -\frac{9}{5} by multiplying numerator times numerator and denominator times denominator.
x=\frac{63}{45}
Do the multiplications in the fraction \frac{-7\left(-9\right)}{9\times 5}.
x=\frac{7}{5}
Reduce the fraction \frac{63}{45} to lowest terms by extracting and canceling out 9.