Solve for x
x=-1
Graph
Share
Copied to clipboard
\frac{2}{3}\times 5x+\frac{2}{3}\left(-1\right)-\frac{4}{5}\left(2x-3\right)=0
Use the distributive property to multiply \frac{2}{3} by 5x-1.
\frac{2\times 5}{3}x+\frac{2}{3}\left(-1\right)-\frac{4}{5}\left(2x-3\right)=0
Express \frac{2}{3}\times 5 as a single fraction.
\frac{10}{3}x+\frac{2}{3}\left(-1\right)-\frac{4}{5}\left(2x-3\right)=0
Multiply 2 and 5 to get 10.
\frac{10}{3}x-\frac{2}{3}-\frac{4}{5}\left(2x-3\right)=0
Multiply \frac{2}{3} and -1 to get -\frac{2}{3}.
\frac{10}{3}x-\frac{2}{3}-\frac{4}{5}\times 2x-\frac{4}{5}\left(-3\right)=0
Use the distributive property to multiply -\frac{4}{5} by 2x-3.
\frac{10}{3}x-\frac{2}{3}+\frac{-4\times 2}{5}x-\frac{4}{5}\left(-3\right)=0
Express -\frac{4}{5}\times 2 as a single fraction.
\frac{10}{3}x-\frac{2}{3}+\frac{-8}{5}x-\frac{4}{5}\left(-3\right)=0
Multiply -4 and 2 to get -8.
\frac{10}{3}x-\frac{2}{3}-\frac{8}{5}x-\frac{4}{5}\left(-3\right)=0
Fraction \frac{-8}{5} can be rewritten as -\frac{8}{5} by extracting the negative sign.
\frac{10}{3}x-\frac{2}{3}-\frac{8}{5}x+\frac{-4\left(-3\right)}{5}=0
Express -\frac{4}{5}\left(-3\right) as a single fraction.
\frac{10}{3}x-\frac{2}{3}-\frac{8}{5}x+\frac{12}{5}=0
Multiply -4 and -3 to get 12.
\frac{26}{15}x-\frac{2}{3}+\frac{12}{5}=0
Combine \frac{10}{3}x and -\frac{8}{5}x to get \frac{26}{15}x.
\frac{26}{15}x-\frac{10}{15}+\frac{36}{15}=0
Least common multiple of 3 and 5 is 15. Convert -\frac{2}{3} and \frac{12}{5} to fractions with denominator 15.
\frac{26}{15}x+\frac{-10+36}{15}=0
Since -\frac{10}{15} and \frac{36}{15} have the same denominator, add them by adding their numerators.
\frac{26}{15}x+\frac{26}{15}=0
Add -10 and 36 to get 26.
\frac{26}{15}x=-\frac{26}{15}
Subtract \frac{26}{15} from both sides. Anything subtracted from zero gives its negation.
x=-\frac{26}{15}\times \frac{15}{26}
Multiply both sides by \frac{15}{26}, the reciprocal of \frac{26}{15}.
x=\frac{-26\times 15}{15\times 26}
Multiply -\frac{26}{15} times \frac{15}{26} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-26}{26}
Cancel out 15 in both numerator and denominator.
x=-1
Divide -26 by 26 to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}