Evaluate
-\frac{55}{3}\approx -18.333333333
Factor
-\frac{55}{3} = -18\frac{1}{3} = -18.333333333333332
Share
Copied to clipboard
\frac{2}{3}\left(-\frac{5}{4}\right)+\frac{-10}{3}\times \frac{5}{2}-\frac{-16}{3}\times \frac{-55}{32}
Fraction \frac{-5}{4} can be rewritten as -\frac{5}{4} by extracting the negative sign.
\frac{2\left(-5\right)}{3\times 4}+\frac{-10}{3}\times \frac{5}{2}-\frac{-16}{3}\times \frac{-55}{32}
Multiply \frac{2}{3} times -\frac{5}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{-10}{12}+\frac{-10}{3}\times \frac{5}{2}-\frac{-16}{3}\times \frac{-55}{32}
Do the multiplications in the fraction \frac{2\left(-5\right)}{3\times 4}.
-\frac{5}{6}+\frac{-10}{3}\times \frac{5}{2}-\frac{-16}{3}\times \frac{-55}{32}
Reduce the fraction \frac{-10}{12} to lowest terms by extracting and canceling out 2.
-\frac{5}{6}-\frac{10}{3}\times \frac{5}{2}-\frac{-16}{3}\times \frac{-55}{32}
Fraction \frac{-10}{3} can be rewritten as -\frac{10}{3} by extracting the negative sign.
-\frac{5}{6}+\frac{-10\times 5}{3\times 2}-\frac{-16}{3}\times \frac{-55}{32}
Multiply -\frac{10}{3} times \frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
-\frac{5}{6}+\frac{-50}{6}-\frac{-16}{3}\times \frac{-55}{32}
Do the multiplications in the fraction \frac{-10\times 5}{3\times 2}.
-\frac{5}{6}-\frac{25}{3}-\frac{-16}{3}\times \frac{-55}{32}
Reduce the fraction \frac{-50}{6} to lowest terms by extracting and canceling out 2.
-\frac{5}{6}-\frac{50}{6}-\frac{-16}{3}\times \frac{-55}{32}
Least common multiple of 6 and 3 is 6. Convert -\frac{5}{6} and \frac{25}{3} to fractions with denominator 6.
\frac{-5-50}{6}-\frac{-16}{3}\times \frac{-55}{32}
Since -\frac{5}{6} and \frac{50}{6} have the same denominator, subtract them by subtracting their numerators.
-\frac{55}{6}-\frac{-16}{3}\times \frac{-55}{32}
Subtract 50 from -5 to get -55.
-\frac{55}{6}-\left(-\frac{16}{3}\times \frac{-55}{32}\right)
Fraction \frac{-16}{3} can be rewritten as -\frac{16}{3} by extracting the negative sign.
-\frac{55}{6}-\left(-\frac{16}{3}\left(-\frac{55}{32}\right)\right)
Fraction \frac{-55}{32} can be rewritten as -\frac{55}{32} by extracting the negative sign.
-\frac{55}{6}-\frac{-16\left(-55\right)}{3\times 32}
Multiply -\frac{16}{3} times -\frac{55}{32} by multiplying numerator times numerator and denominator times denominator.
-\frac{55}{6}-\frac{880}{96}
Do the multiplications in the fraction \frac{-16\left(-55\right)}{3\times 32}.
-\frac{55}{6}-\frac{55}{6}
Reduce the fraction \frac{880}{96} to lowest terms by extracting and canceling out 16.
\frac{-55-55}{6}
Since -\frac{55}{6} and \frac{55}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{-110}{6}
Subtract 55 from -55 to get -110.
-\frac{55}{3}
Reduce the fraction \frac{-110}{6} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}