Solve for a (complex solution)
a=-\frac{\left(3x-4\right)\left(x+2\right)}{x\left(2-x\right)}
x\neq 2\text{ and }x\neq 0\text{ and }x\neq -2
Solve for a
a=-\frac{\left(3x-4\right)\left(x+2\right)}{x\left(2-x\right)}
x\neq 0\text{ and }|x|\neq 2
Solve for x
\left\{\begin{matrix}x=-\frac{\sqrt{a^{2}-6a+25}+a+1}{3-a}\text{, }&a\neq 3\text{ and }a\neq 0\\x=\frac{\sqrt{a^{2}-6a+25}-a-1}{3-a}\text{, }&a\neq 3\\x=1\text{, }&a=3\end{matrix}\right.
Graph
Share
Copied to clipboard
-\left(2+x\right)\times 2+\left(x-2\right)\left(x+2\right)\left(-3\right)=\left(x-2\right)\left(-a\right)x
Multiply both sides of the equation by \left(x-2\right)\left(x+2\right), the least common multiple of 2-x,x+2.
\left(-2-x\right)\times 2+\left(x-2\right)\left(x+2\right)\left(-3\right)=\left(x-2\right)\left(-a\right)x
To find the opposite of 2+x, find the opposite of each term.
-4-2x+\left(x-2\right)\left(x+2\right)\left(-3\right)=\left(x-2\right)\left(-a\right)x
Use the distributive property to multiply -2-x by 2.
-4-2x+\left(x^{2}-4\right)\left(-3\right)=\left(x-2\right)\left(-a\right)x
Use the distributive property to multiply x-2 by x+2 and combine like terms.
-4-2x-3x^{2}+12=\left(x-2\right)\left(-a\right)x
Use the distributive property to multiply x^{2}-4 by -3.
8-2x-3x^{2}=\left(x-2\right)\left(-a\right)x
Add -4 and 12 to get 8.
8-2x-3x^{2}=\left(x\left(-a\right)-2\left(-a\right)\right)x
Use the distributive property to multiply x-2 by -a.
8-2x-3x^{2}=\left(x\left(-a\right)+2a\right)x
Multiply -2 and -1 to get 2.
8-2x-3x^{2}=\left(-a\right)x^{2}+2ax
Use the distributive property to multiply x\left(-a\right)+2a by x.
\left(-a\right)x^{2}+2ax=8-2x-3x^{2}
Swap sides so that all variable terms are on the left hand side.
-ax^{2}+2ax=-3x^{2}-2x+8
Reorder the terms.
\left(-x^{2}+2x\right)a=-3x^{2}-2x+8
Combine all terms containing a.
\left(2x-x^{2}\right)a=8-2x-3x^{2}
The equation is in standard form.
\frac{\left(2x-x^{2}\right)a}{2x-x^{2}}=-\frac{\left(3x-4\right)\left(x+2\right)}{2x-x^{2}}
Divide both sides by -x^{2}+2x.
a=-\frac{\left(3x-4\right)\left(x+2\right)}{2x-x^{2}}
Dividing by -x^{2}+2x undoes the multiplication by -x^{2}+2x.
a=-\frac{\left(3x-4\right)\left(x+2\right)}{x\left(2-x\right)}
Divide -\left(-4+3x\right)\left(2+x\right) by -x^{2}+2x.
-\left(2+x\right)\times 2+\left(x-2\right)\left(x+2\right)\left(-3\right)=\left(x-2\right)\left(-a\right)x
Multiply both sides of the equation by \left(x-2\right)\left(x+2\right), the least common multiple of 2-x,x+2.
\left(-2-x\right)\times 2+\left(x-2\right)\left(x+2\right)\left(-3\right)=\left(x-2\right)\left(-a\right)x
To find the opposite of 2+x, find the opposite of each term.
-4-2x+\left(x-2\right)\left(x+2\right)\left(-3\right)=\left(x-2\right)\left(-a\right)x
Use the distributive property to multiply -2-x by 2.
-4-2x+\left(x^{2}-4\right)\left(-3\right)=\left(x-2\right)\left(-a\right)x
Use the distributive property to multiply x-2 by x+2 and combine like terms.
-4-2x-3x^{2}+12=\left(x-2\right)\left(-a\right)x
Use the distributive property to multiply x^{2}-4 by -3.
8-2x-3x^{2}=\left(x-2\right)\left(-a\right)x
Add -4 and 12 to get 8.
8-2x-3x^{2}=\left(x\left(-a\right)-2\left(-a\right)\right)x
Use the distributive property to multiply x-2 by -a.
8-2x-3x^{2}=\left(x\left(-a\right)+2a\right)x
Multiply -2 and -1 to get 2.
8-2x-3x^{2}=\left(-a\right)x^{2}+2ax
Use the distributive property to multiply x\left(-a\right)+2a by x.
\left(-a\right)x^{2}+2ax=8-2x-3x^{2}
Swap sides so that all variable terms are on the left hand side.
-ax^{2}+2ax=-3x^{2}-2x+8
Reorder the terms.
\left(-x^{2}+2x\right)a=-3x^{2}-2x+8
Combine all terms containing a.
\left(2x-x^{2}\right)a=8-2x-3x^{2}
The equation is in standard form.
\frac{\left(2x-x^{2}\right)a}{2x-x^{2}}=-\frac{\left(3x-4\right)\left(x+2\right)}{2x-x^{2}}
Divide both sides by -x^{2}+2x.
a=-\frac{\left(3x-4\right)\left(x+2\right)}{2x-x^{2}}
Dividing by -x^{2}+2x undoes the multiplication by -x^{2}+2x.
a=-\frac{\left(3x-4\right)\left(x+2\right)}{x\left(2-x\right)}
Divide -\left(-4+3x\right)\left(2+x\right) by -x^{2}+2x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}