Skip to main content
Solve for a (complex solution)
Tick mark Image
Solve for a
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-\left(2+x\right)\times 2+\left(x-2\right)\left(x+2\right)\left(-3\right)=\left(x-2\right)\left(-a\right)x
Multiply both sides of the equation by \left(x-2\right)\left(x+2\right), the least common multiple of 2-x,x+2.
\left(-2-x\right)\times 2+\left(x-2\right)\left(x+2\right)\left(-3\right)=\left(x-2\right)\left(-a\right)x
To find the opposite of 2+x, find the opposite of each term.
-4-2x+\left(x-2\right)\left(x+2\right)\left(-3\right)=\left(x-2\right)\left(-a\right)x
Use the distributive property to multiply -2-x by 2.
-4-2x+\left(x^{2}-4\right)\left(-3\right)=\left(x-2\right)\left(-a\right)x
Use the distributive property to multiply x-2 by x+2 and combine like terms.
-4-2x-3x^{2}+12=\left(x-2\right)\left(-a\right)x
Use the distributive property to multiply x^{2}-4 by -3.
8-2x-3x^{2}=\left(x-2\right)\left(-a\right)x
Add -4 and 12 to get 8.
8-2x-3x^{2}=\left(x\left(-a\right)-2\left(-a\right)\right)x
Use the distributive property to multiply x-2 by -a.
8-2x-3x^{2}=\left(x\left(-a\right)+2a\right)x
Multiply -2 and -1 to get 2.
8-2x-3x^{2}=\left(-a\right)x^{2}+2ax
Use the distributive property to multiply x\left(-a\right)+2a by x.
\left(-a\right)x^{2}+2ax=8-2x-3x^{2}
Swap sides so that all variable terms are on the left hand side.
-ax^{2}+2ax=-3x^{2}-2x+8
Reorder the terms.
\left(-x^{2}+2x\right)a=-3x^{2}-2x+8
Combine all terms containing a.
\left(2x-x^{2}\right)a=8-2x-3x^{2}
The equation is in standard form.
\frac{\left(2x-x^{2}\right)a}{2x-x^{2}}=-\frac{\left(3x-4\right)\left(x+2\right)}{2x-x^{2}}
Divide both sides by -x^{2}+2x.
a=-\frac{\left(3x-4\right)\left(x+2\right)}{2x-x^{2}}
Dividing by -x^{2}+2x undoes the multiplication by -x^{2}+2x.
a=-\frac{\left(3x-4\right)\left(x+2\right)}{x\left(2-x\right)}
Divide -\left(-4+3x\right)\left(2+x\right) by -x^{2}+2x.
-\left(2+x\right)\times 2+\left(x-2\right)\left(x+2\right)\left(-3\right)=\left(x-2\right)\left(-a\right)x
Multiply both sides of the equation by \left(x-2\right)\left(x+2\right), the least common multiple of 2-x,x+2.
\left(-2-x\right)\times 2+\left(x-2\right)\left(x+2\right)\left(-3\right)=\left(x-2\right)\left(-a\right)x
To find the opposite of 2+x, find the opposite of each term.
-4-2x+\left(x-2\right)\left(x+2\right)\left(-3\right)=\left(x-2\right)\left(-a\right)x
Use the distributive property to multiply -2-x by 2.
-4-2x+\left(x^{2}-4\right)\left(-3\right)=\left(x-2\right)\left(-a\right)x
Use the distributive property to multiply x-2 by x+2 and combine like terms.
-4-2x-3x^{2}+12=\left(x-2\right)\left(-a\right)x
Use the distributive property to multiply x^{2}-4 by -3.
8-2x-3x^{2}=\left(x-2\right)\left(-a\right)x
Add -4 and 12 to get 8.
8-2x-3x^{2}=\left(x\left(-a\right)-2\left(-a\right)\right)x
Use the distributive property to multiply x-2 by -a.
8-2x-3x^{2}=\left(x\left(-a\right)+2a\right)x
Multiply -2 and -1 to get 2.
8-2x-3x^{2}=\left(-a\right)x^{2}+2ax
Use the distributive property to multiply x\left(-a\right)+2a by x.
\left(-a\right)x^{2}+2ax=8-2x-3x^{2}
Swap sides so that all variable terms are on the left hand side.
-ax^{2}+2ax=-3x^{2}-2x+8
Reorder the terms.
\left(-x^{2}+2x\right)a=-3x^{2}-2x+8
Combine all terms containing a.
\left(2x-x^{2}\right)a=8-2x-3x^{2}
The equation is in standard form.
\frac{\left(2x-x^{2}\right)a}{2x-x^{2}}=-\frac{\left(3x-4\right)\left(x+2\right)}{2x-x^{2}}
Divide both sides by -x^{2}+2x.
a=-\frac{\left(3x-4\right)\left(x+2\right)}{2x-x^{2}}
Dividing by -x^{2}+2x undoes the multiplication by -x^{2}+2x.
a=-\frac{\left(3x-4\right)\left(x+2\right)}{x\left(2-x\right)}
Divide -\left(-4+3x\right)\left(2+x\right) by -x^{2}+2x.