Solve for x
x = \frac{32025}{223} = 143\frac{136}{223} \approx 143.609865471
Graph
Share
Copied to clipboard
\frac{2}{15}x+\frac{3\times 1}{35\times 5}x+122=x
Multiply \frac{3}{35} times \frac{1}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{15}x+\frac{3}{175}x+122=x
Do the multiplications in the fraction \frac{3\times 1}{35\times 5}.
\frac{79}{525}x+122=x
Combine \frac{2}{15}x and \frac{3}{175}x to get \frac{79}{525}x.
\frac{79}{525}x+122-x=0
Subtract x from both sides.
-\frac{446}{525}x+122=0
Combine \frac{79}{525}x and -x to get -\frac{446}{525}x.
-\frac{446}{525}x=-122
Subtract 122 from both sides. Anything subtracted from zero gives its negation.
x=-122\left(-\frac{525}{446}\right)
Multiply both sides by -\frac{525}{446}, the reciprocal of -\frac{446}{525}.
x=\frac{-122\left(-525\right)}{446}
Express -122\left(-\frac{525}{446}\right) as a single fraction.
x=\frac{64050}{446}
Multiply -122 and -525 to get 64050.
x=\frac{32025}{223}
Reduce the fraction \frac{64050}{446} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}