Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\left(-1-i\sqrt{3}\right)}{\left(-1+i\sqrt{3}\right)\left(-1-i\sqrt{3}\right)}
Rationalize the denominator of \frac{2}{-1+i\sqrt{3}} by multiplying numerator and denominator by -1-i\sqrt{3}.
\frac{2\left(-1-i\sqrt{3}\right)}{\left(-1\right)^{2}-\left(i\sqrt{3}\right)^{2}}
Consider \left(-1+i\sqrt{3}\right)\left(-1-i\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(-1-i\sqrt{3}\right)}{1-\left(i\sqrt{3}\right)^{2}}
Calculate -1 to the power of 2 and get 1.
\frac{2\left(-1-i\sqrt{3}\right)}{1-i^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(i\sqrt{3}\right)^{2}.
\frac{2\left(-1-i\sqrt{3}\right)}{1-\left(-\left(\sqrt{3}\right)^{2}\right)}
Calculate i to the power of 2 and get -1.
\frac{2\left(-1-i\sqrt{3}\right)}{1-\left(-3\right)}
The square of \sqrt{3} is 3.
\frac{2\left(-1-i\sqrt{3}\right)}{1+3}
Multiply -1 and -3 to get 3.
\frac{2\left(-1-i\sqrt{3}\right)}{4}
Add 1 and 3 to get 4.
\frac{1}{2}\left(-1-i\sqrt{3}\right)
Divide 2\left(-1-i\sqrt{3}\right) by 4 to get \frac{1}{2}\left(-1-i\sqrt{3}\right).
\frac{1}{2}\left(-1\right)+\frac{1}{2}\left(-i\right)\sqrt{3}
Use the distributive property to multiply \frac{1}{2} by -1-i\sqrt{3}.
-\frac{1}{2}+\frac{1}{2}\left(-i\right)\sqrt{3}
Multiply \frac{1}{2} and -1 to get -\frac{1}{2}.
-\frac{1}{2}-\frac{1}{2}i\sqrt{3}
Multiply \frac{1}{2} and -i to get -\frac{1}{2}i.