Evaluate
\frac{5-\sqrt{7}}{9}\approx 0.261583188
Share
Copied to clipboard
\frac{2\left(\sqrt{7}-5\right)}{\left(\sqrt{7}+5\right)\left(\sqrt{7}-5\right)}
Rationalize the denominator of \frac{2}{\sqrt{7}+5} by multiplying numerator and denominator by \sqrt{7}-5.
\frac{2\left(\sqrt{7}-5\right)}{\left(\sqrt{7}\right)^{2}-5^{2}}
Consider \left(\sqrt{7}+5\right)\left(\sqrt{7}-5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(\sqrt{7}-5\right)}{7-25}
Square \sqrt{7}. Square 5.
\frac{2\left(\sqrt{7}-5\right)}{-18}
Subtract 25 from 7 to get -18.
-\frac{1}{9}\left(\sqrt{7}-5\right)
Divide 2\left(\sqrt{7}-5\right) by -18 to get -\frac{1}{9}\left(\sqrt{7}-5\right).
-\frac{1}{9}\sqrt{7}-\frac{1}{9}\left(-5\right)
Use the distributive property to multiply -\frac{1}{9} by \sqrt{7}-5.
-\frac{1}{9}\sqrt{7}+\frac{-\left(-5\right)}{9}
Express -\frac{1}{9}\left(-5\right) as a single fraction.
-\frac{1}{9}\sqrt{7}+\frac{5}{9}
Multiply -1 and -5 to get 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}