Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\left(\sqrt{7}-5\right)}{\left(\sqrt{7}+5\right)\left(\sqrt{7}-5\right)}
Rationalize the denominator of \frac{2}{\sqrt{7}+5} by multiplying numerator and denominator by \sqrt{7}-5.
\frac{2\left(\sqrt{7}-5\right)}{\left(\sqrt{7}\right)^{2}-5^{2}}
Consider \left(\sqrt{7}+5\right)\left(\sqrt{7}-5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(\sqrt{7}-5\right)}{7-25}
Square \sqrt{7}. Square 5.
\frac{2\left(\sqrt{7}-5\right)}{-18}
Subtract 25 from 7 to get -18.
-\frac{1}{9}\left(\sqrt{7}-5\right)
Divide 2\left(\sqrt{7}-5\right) by -18 to get -\frac{1}{9}\left(\sqrt{7}-5\right).
-\frac{1}{9}\sqrt{7}-\frac{1}{9}\left(-5\right)
Use the distributive property to multiply -\frac{1}{9} by \sqrt{7}-5.
-\frac{1}{9}\sqrt{7}+\frac{-\left(-5\right)}{9}
Express -\frac{1}{9}\left(-5\right) as a single fraction.
-\frac{1}{9}\sqrt{7}+\frac{5}{9}
Multiply -1 and -5 to get 5.