Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\left(\sqrt{7}-\sqrt{3}\right)}{\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}
Rationalize the denominator of \frac{2}{\sqrt{7}+\sqrt{3}} by multiplying numerator and denominator by \sqrt{7}-\sqrt{3}.
\frac{2\left(\sqrt{7}-\sqrt{3}\right)}{\left(\sqrt{7}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(\sqrt{7}-\sqrt{3}\right)}{7-3}
Square \sqrt{7}. Square \sqrt{3}.
\frac{2\left(\sqrt{7}-\sqrt{3}\right)}{4}
Subtract 3 from 7 to get 4.
\frac{1}{2}\left(\sqrt{7}-\sqrt{3}\right)
Divide 2\left(\sqrt{7}-\sqrt{3}\right) by 4 to get \frac{1}{2}\left(\sqrt{7}-\sqrt{3}\right).
\frac{1}{2}\sqrt{7}+\frac{1}{2}\left(-1\right)\sqrt{3}
Use the distributive property to multiply \frac{1}{2} by \sqrt{7}-\sqrt{3}.
\frac{1}{2}\sqrt{7}-\frac{1}{2}\sqrt{3}
Multiply \frac{1}{2} and -1 to get -\frac{1}{2}.