Evaluate
\sqrt{6}-\sqrt{5}\approx 0.213421765
Share
Copied to clipboard
\frac{2\left(\sqrt{6}+2\right)}{\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}-\frac{1}{\sqrt{5}-2}
Rationalize the denominator of \frac{2}{\sqrt{6}-2} by multiplying numerator and denominator by \sqrt{6}+2.
\frac{2\left(\sqrt{6}+2\right)}{\left(\sqrt{6}\right)^{2}-2^{2}}-\frac{1}{\sqrt{5}-2}
Consider \left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(\sqrt{6}+2\right)}{6-4}-\frac{1}{\sqrt{5}-2}
Square \sqrt{6}. Square 2.
\frac{2\left(\sqrt{6}+2\right)}{2}-\frac{1}{\sqrt{5}-2}
Subtract 4 from 6 to get 2.
\sqrt{6}+2-\frac{1}{\sqrt{5}-2}
Cancel out 2 and 2.
\sqrt{6}+2-\frac{\sqrt{5}+2}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}
Rationalize the denominator of \frac{1}{\sqrt{5}-2} by multiplying numerator and denominator by \sqrt{5}+2.
\sqrt{6}+2-\frac{\sqrt{5}+2}{\left(\sqrt{5}\right)^{2}-2^{2}}
Consider \left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\sqrt{6}+2-\frac{\sqrt{5}+2}{5-4}
Square \sqrt{5}. Square 2.
\sqrt{6}+2-\frac{\sqrt{5}+2}{1}
Subtract 4 from 5 to get 1.
\sqrt{6}+2-\left(\sqrt{5}+2\right)
Anything divided by one gives itself.
\sqrt{6}+2-\sqrt{5}-2
To find the opposite of \sqrt{5}+2, find the opposite of each term.
\sqrt{6}-\sqrt{5}
Subtract 2 from 2 to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}