\frac{ 2 }{ \sqrt{ 5 } } - \frac{ 2 }{ \sqrt{ 7 } } ( \frac{ \sqrt{ 5 } }{ \sqrt{ 5 } } - \frac{ \sqrt{ 7 } }{ \sqrt{ 7 } }
Evaluate
\frac{2\sqrt{5}}{5}\approx 0.894427191
Share
Copied to clipboard
\frac{2}{\sqrt{5}}-\frac{2}{\sqrt{7}}\left(1-\frac{\sqrt{7}}{\sqrt{7}}\right)
Divide \sqrt{5} by \sqrt{5} to get 1.
\frac{2}{\sqrt{5}}-\frac{2}{\sqrt{7}}\left(1-1\right)
Divide \sqrt{7} by \sqrt{7} to get 1.
\frac{2\sqrt{5}}{\left(\sqrt{5}\right)^{2}}-\frac{2}{\sqrt{7}}\left(1-1\right)
Rationalize the denominator of \frac{2}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{2\sqrt{5}}{5}-\frac{2}{\sqrt{7}}\left(1-1\right)
The square of \sqrt{5} is 5.
\frac{2\sqrt{5}}{5}-\frac{2\sqrt{7}}{\left(\sqrt{7}\right)^{2}}\left(1-1\right)
Rationalize the denominator of \frac{2}{\sqrt{7}} by multiplying numerator and denominator by \sqrt{7}.
\frac{2\sqrt{5}}{5}-\frac{2\sqrt{7}}{7}\left(1-1\right)
The square of \sqrt{7} is 7.
\frac{2\sqrt{5}}{5}-\frac{2\sqrt{7}}{7}\times 0
Subtract 1 from 1 to get 0.
\frac{2\sqrt{5}}{5}-0
Anything times zero gives zero.
\frac{2\sqrt{5}}{5}-\frac{0\times 5}{5}
To add or subtract expressions, expand them to make their denominators the same. Multiply 0 times \frac{5}{5}.
\frac{2\sqrt{5}-0\times 5}{5}
Since \frac{2\sqrt{5}}{5} and \frac{0\times 5}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{2\sqrt{5}}{5}
Do the multiplications in 2\sqrt{5}-0\times 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}