Skip to main content
Solve for n
Tick mark Image
Solve for H
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2\sqrt{5}}{\left(\sqrt{5}\right)^{2}}=n\times \frac{2H-x}{\sqrt{\left(2H-x\right)^{2}+H^{2}}}
Rationalize the denominator of \frac{2}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{2\sqrt{5}}{5}=n\times \frac{2H-x}{\sqrt{\left(2H-x\right)^{2}+H^{2}}}
The square of \sqrt{5} is 5.
\frac{2\sqrt{5}}{5}=n\times \frac{2H-x}{\sqrt{4H^{2}-4Hx+x^{2}+H^{2}}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2H-x\right)^{2}.
\frac{2\sqrt{5}}{5}=n\times \frac{2H-x}{\sqrt{5H^{2}-4Hx+x^{2}}}
Combine 4H^{2} and H^{2} to get 5H^{2}.
\frac{2\sqrt{5}}{5}=\frac{n\left(2H-x\right)}{\sqrt{5H^{2}-4Hx+x^{2}}}
Express n\times \frac{2H-x}{\sqrt{5H^{2}-4Hx+x^{2}}} as a single fraction.
\frac{2\sqrt{5}}{5}=\frac{2nH-nx}{\sqrt{5H^{2}-4Hx+x^{2}}}
Use the distributive property to multiply n by 2H-x.
\frac{2nH-nx}{\sqrt{5H^{2}-4Hx+x^{2}}}=\frac{2\sqrt{5}}{5}
Swap sides so that all variable terms are on the left hand side.
5\left(5H^{2}-4Hx+x^{2}\right)^{-\frac{1}{2}}\left(2nH-nx\right)=2\sqrt{5}
Multiply both sides of the equation by 5.
5\left(x^{2}-4Hx+5H^{2}\right)^{-\frac{1}{2}}\left(-nx+2Hn\right)=2\sqrt{5}
Reorder the terms.
-5\left(x^{2}-4Hx+5H^{2}\right)^{-\frac{1}{2}}nx+10\left(x^{2}-4Hx+5H^{2}\right)^{-\frac{1}{2}}nH=2\sqrt{5}
Use the distributive property to multiply 5\left(x^{2}-4Hx+5H^{2}\right)^{-\frac{1}{2}} by -nx+2Hn.
\left(-5\left(x^{2}-4Hx+5H^{2}\right)^{-\frac{1}{2}}x+10\left(x^{2}-4Hx+5H^{2}\right)^{-\frac{1}{2}}H\right)n=2\sqrt{5}
Combine all terms containing n.
\frac{10H-5x}{\sqrt{x^{2}-4Hx+5H^{2}}}n=2\sqrt{5}
The equation is in standard form.
\frac{\frac{10H-5x}{\sqrt{x^{2}-4Hx+5H^{2}}}n\sqrt{x^{2}-4Hx+5H^{2}}}{10H-5x}=\frac{2\sqrt{5}\sqrt{x^{2}-4Hx+5H^{2}}}{10H-5x}
Divide both sides by -5\left(x^{2}-4Hx+5H^{2}\right)^{-\frac{1}{2}}x+10\left(x^{2}-4Hx+5H^{2}\right)^{-\frac{1}{2}}H.
n=\frac{2\sqrt{5}\sqrt{x^{2}-4Hx+5H^{2}}}{10H-5x}
Dividing by -5\left(x^{2}-4Hx+5H^{2}\right)^{-\frac{1}{2}}x+10\left(x^{2}-4Hx+5H^{2}\right)^{-\frac{1}{2}}H undoes the multiplication by -5\left(x^{2}-4Hx+5H^{2}\right)^{-\frac{1}{2}}x+10\left(x^{2}-4Hx+5H^{2}\right)^{-\frac{1}{2}}H.
n=\frac{2\sqrt{5x^{2}-20Hx+25H^{2}}}{5\left(2H-x\right)}
Divide 2\sqrt{5} by -5\left(x^{2}-4Hx+5H^{2}\right)^{-\frac{1}{2}}x+10\left(x^{2}-4Hx+5H^{2}\right)^{-\frac{1}{2}}H.