Solve for n
n=\frac{2\sqrt{5\left(x^{2}-4Hx+5H^{2}\right)}}{5\left(2H-x\right)}
H\neq \frac{x}{2}\text{ and }\left(x\neq 0\text{ or }H\neq 0\right)
Solve for H
\left\{\begin{matrix}H=\frac{x\left(-5n^{2}-\sqrt{5n^{2}-4}+4\right)}{10\left(1-n^{2}\right)}\text{, }&\left(n<1\text{ and }x<0\text{ and }n\geq \frac{2\sqrt{5}}{5}\right)\text{ or }\left(n>-1\text{ and }x>0\text{ and }n\leq -\frac{2\sqrt{5}}{5}\right)\text{ or }\left(n>1\text{ and }x>0\right)\text{ or }\left(n<-1\text{ and }x<0\right)\\H=\frac{x\left(-5n^{2}+\sqrt{5n^{2}-4}+4\right)}{10\left(1-n^{2}\right)}\text{, }&\left(n\neq -1\text{ and }n\leq -\frac{2\sqrt{5}}{5}\text{ and }x>0\right)\text{ or }\left(n\neq 1\text{ and }n\geq \frac{2\sqrt{5}}{5}\text{ and }x<0\right)\\H=\frac{x}{4}\text{, }&\left(n=-1\text{ and }x>0\right)\text{ or }\left(n=1\text{ and }x<0\right)\\H<0\text{, }&n=-1\text{ and }x=0\\H>0\text{, }&n=1\text{ and }x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
\frac{2\sqrt{5}}{\left(\sqrt{5}\right)^{2}}=n\times \frac{2H-x}{\sqrt{\left(2H-x\right)^{2}+H^{2}}}
Rationalize the denominator of \frac{2}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{2\sqrt{5}}{5}=n\times \frac{2H-x}{\sqrt{\left(2H-x\right)^{2}+H^{2}}}
The square of \sqrt{5} is 5.
\frac{2\sqrt{5}}{5}=n\times \frac{2H-x}{\sqrt{4H^{2}-4Hx+x^{2}+H^{2}}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2H-x\right)^{2}.
\frac{2\sqrt{5}}{5}=n\times \frac{2H-x}{\sqrt{5H^{2}-4Hx+x^{2}}}
Combine 4H^{2} and H^{2} to get 5H^{2}.
\frac{2\sqrt{5}}{5}=\frac{n\left(2H-x\right)}{\sqrt{5H^{2}-4Hx+x^{2}}}
Express n\times \frac{2H-x}{\sqrt{5H^{2}-4Hx+x^{2}}} as a single fraction.
\frac{2\sqrt{5}}{5}=\frac{2nH-nx}{\sqrt{5H^{2}-4Hx+x^{2}}}
Use the distributive property to multiply n by 2H-x.
\frac{2nH-nx}{\sqrt{5H^{2}-4Hx+x^{2}}}=\frac{2\sqrt{5}}{5}
Swap sides so that all variable terms are on the left hand side.
5\left(5H^{2}-4Hx+x^{2}\right)^{-\frac{1}{2}}\left(2nH-nx\right)=2\sqrt{5}
Multiply both sides of the equation by 5.
5\left(x^{2}-4Hx+5H^{2}\right)^{-\frac{1}{2}}\left(-nx+2Hn\right)=2\sqrt{5}
Reorder the terms.
-5\left(x^{2}-4Hx+5H^{2}\right)^{-\frac{1}{2}}nx+10\left(x^{2}-4Hx+5H^{2}\right)^{-\frac{1}{2}}nH=2\sqrt{5}
Use the distributive property to multiply 5\left(x^{2}-4Hx+5H^{2}\right)^{-\frac{1}{2}} by -nx+2Hn.
\left(-5\left(x^{2}-4Hx+5H^{2}\right)^{-\frac{1}{2}}x+10\left(x^{2}-4Hx+5H^{2}\right)^{-\frac{1}{2}}H\right)n=2\sqrt{5}
Combine all terms containing n.
\frac{10H-5x}{\sqrt{x^{2}-4Hx+5H^{2}}}n=2\sqrt{5}
The equation is in standard form.
\frac{\frac{10H-5x}{\sqrt{x^{2}-4Hx+5H^{2}}}n\sqrt{x^{2}-4Hx+5H^{2}}}{10H-5x}=\frac{2\sqrt{5}\sqrt{x^{2}-4Hx+5H^{2}}}{10H-5x}
Divide both sides by -5\left(x^{2}-4Hx+5H^{2}\right)^{-\frac{1}{2}}x+10\left(x^{2}-4Hx+5H^{2}\right)^{-\frac{1}{2}}H.
n=\frac{2\sqrt{5}\sqrt{x^{2}-4Hx+5H^{2}}}{10H-5x}
Dividing by -5\left(x^{2}-4Hx+5H^{2}\right)^{-\frac{1}{2}}x+10\left(x^{2}-4Hx+5H^{2}\right)^{-\frac{1}{2}}H undoes the multiplication by -5\left(x^{2}-4Hx+5H^{2}\right)^{-\frac{1}{2}}x+10\left(x^{2}-4Hx+5H^{2}\right)^{-\frac{1}{2}}H.
n=\frac{2\sqrt{5x^{2}-20Hx+25H^{2}}}{5\left(2H-x\right)}
Divide 2\sqrt{5} by -5\left(x^{2}-4Hx+5H^{2}\right)^{-\frac{1}{2}}x+10\left(x^{2}-4Hx+5H^{2}\right)^{-\frac{1}{2}}H.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}