Evaluate
\frac{-\sqrt{3}-5}{11}\approx -0.612004619
Share
Copied to clipboard
\frac{2\left(\sqrt{3}+5\right)}{\left(\sqrt{3}-5\right)\left(\sqrt{3}+5\right)}
Rationalize the denominator of \frac{2}{\sqrt{3}-5} by multiplying numerator and denominator by \sqrt{3}+5.
\frac{2\left(\sqrt{3}+5\right)}{\left(\sqrt{3}\right)^{2}-5^{2}}
Consider \left(\sqrt{3}-5\right)\left(\sqrt{3}+5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(\sqrt{3}+5\right)}{3-25}
Square \sqrt{3}. Square 5.
\frac{2\left(\sqrt{3}+5\right)}{-22}
Subtract 25 from 3 to get -22.
-\frac{1}{11}\left(\sqrt{3}+5\right)
Divide 2\left(\sqrt{3}+5\right) by -22 to get -\frac{1}{11}\left(\sqrt{3}+5\right).
-\frac{1}{11}\sqrt{3}-\frac{1}{11}\times 5
Use the distributive property to multiply -\frac{1}{11} by \sqrt{3}+5.
-\frac{1}{11}\sqrt{3}+\frac{-5}{11}
Express -\frac{1}{11}\times 5 as a single fraction.
-\frac{1}{11}\sqrt{3}-\frac{5}{11}
Fraction \frac{-5}{11} can be rewritten as -\frac{5}{11} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}