Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\left(\sqrt{3}+5\right)}{\left(\sqrt{3}-5\right)\left(\sqrt{3}+5\right)}
Rationalize the denominator of \frac{2}{\sqrt{3}-5} by multiplying numerator and denominator by \sqrt{3}+5.
\frac{2\left(\sqrt{3}+5\right)}{\left(\sqrt{3}\right)^{2}-5^{2}}
Consider \left(\sqrt{3}-5\right)\left(\sqrt{3}+5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(\sqrt{3}+5\right)}{3-25}
Square \sqrt{3}. Square 5.
\frac{2\left(\sqrt{3}+5\right)}{-22}
Subtract 25 from 3 to get -22.
-\frac{1}{11}\left(\sqrt{3}+5\right)
Divide 2\left(\sqrt{3}+5\right) by -22 to get -\frac{1}{11}\left(\sqrt{3}+5\right).
-\frac{1}{11}\sqrt{3}-\frac{1}{11}\times 5
Use the distributive property to multiply -\frac{1}{11} by \sqrt{3}+5.
-\frac{1}{11}\sqrt{3}+\frac{-5}{11}
Express -\frac{1}{11}\times 5 as a single fraction.
-\frac{1}{11}\sqrt{3}-\frac{5}{11}
Fraction \frac{-5}{11} can be rewritten as -\frac{5}{11} by extracting the negative sign.