Evaluate
\frac{199}{16}=12.4375
Factor
\frac{199}{2 ^ {4}} = 12\frac{7}{16} = 12.4375
Share
Copied to clipboard
\begin{array}{l}\phantom{16)}\phantom{1}\\16\overline{)199}\\\end{array}
Use the 1^{st} digit 1 from dividend 199
\begin{array}{l}\phantom{16)}0\phantom{2}\\16\overline{)199}\\\end{array}
Since 1 is less than 16, use the next digit 9 from dividend 199 and add 0 to the quotient
\begin{array}{l}\phantom{16)}0\phantom{3}\\16\overline{)199}\\\end{array}
Use the 2^{nd} digit 9 from dividend 199
\begin{array}{l}\phantom{16)}01\phantom{4}\\16\overline{)199}\\\phantom{16)}\underline{\phantom{}16\phantom{9}}\\\phantom{16)9}3\\\end{array}
Find closest multiple of 16 to 19. We see that 1 \times 16 = 16 is the nearest. Now subtract 16 from 19 to get reminder 3. Add 1 to quotient.
\begin{array}{l}\phantom{16)}01\phantom{5}\\16\overline{)199}\\\phantom{16)}\underline{\phantom{}16\phantom{9}}\\\phantom{16)9}39\\\end{array}
Use the 3^{rd} digit 9 from dividend 199
\begin{array}{l}\phantom{16)}012\phantom{6}\\16\overline{)199}\\\phantom{16)}\underline{\phantom{}16\phantom{9}}\\\phantom{16)9}39\\\phantom{16)}\underline{\phantom{9}32\phantom{}}\\\phantom{16)99}7\\\end{array}
Find closest multiple of 16 to 39. We see that 2 \times 16 = 32 is the nearest. Now subtract 32 from 39 to get reminder 7. Add 2 to quotient.
\text{Quotient: }12 \text{Reminder: }7
Since 7 is less than 16, stop the division. The reminder is 7. The topmost line 012 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}