Evaluate
\frac{9}{5}=1.8
Factor
\frac{3 ^ {2}}{5} = 1\frac{4}{5} = 1.8
Share
Copied to clipboard
\begin{array}{l}\phantom{1100)}\phantom{1}\\1100\overline{)1980}\\\end{array}
Use the 1^{st} digit 1 from dividend 1980
\begin{array}{l}\phantom{1100)}0\phantom{2}\\1100\overline{)1980}\\\end{array}
Since 1 is less than 1100, use the next digit 9 from dividend 1980 and add 0 to the quotient
\begin{array}{l}\phantom{1100)}0\phantom{3}\\1100\overline{)1980}\\\end{array}
Use the 2^{nd} digit 9 from dividend 1980
\begin{array}{l}\phantom{1100)}00\phantom{4}\\1100\overline{)1980}\\\end{array}
Since 19 is less than 1100, use the next digit 8 from dividend 1980 and add 0 to the quotient
\begin{array}{l}\phantom{1100)}00\phantom{5}\\1100\overline{)1980}\\\end{array}
Use the 3^{rd} digit 8 from dividend 1980
\begin{array}{l}\phantom{1100)}000\phantom{6}\\1100\overline{)1980}\\\end{array}
Since 198 is less than 1100, use the next digit 0 from dividend 1980 and add 0 to the quotient
\begin{array}{l}\phantom{1100)}000\phantom{7}\\1100\overline{)1980}\\\end{array}
Use the 4^{th} digit 0 from dividend 1980
\begin{array}{l}\phantom{1100)}0001\phantom{8}\\1100\overline{)1980}\\\phantom{1100)}\underline{\phantom{}1100\phantom{}}\\\phantom{1100)9}880\\\end{array}
Find closest multiple of 1100 to 1980. We see that 1 \times 1100 = 1100 is the nearest. Now subtract 1100 from 1980 to get reminder 880. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }880
Since 880 is less than 1100, stop the division. The reminder is 880. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}