Evaluate
\frac{197}{100}=1.97
Factor
\frac{197}{2 ^ {2} \cdot 5 ^ {2}} = 1\frac{97}{100} = 1.97
Share
Copied to clipboard
\begin{array}{l}\phantom{1000)}\phantom{1}\\1000\overline{)1970}\\\end{array}
Use the 1^{st} digit 1 from dividend 1970
\begin{array}{l}\phantom{1000)}0\phantom{2}\\1000\overline{)1970}\\\end{array}
Since 1 is less than 1000, use the next digit 9 from dividend 1970 and add 0 to the quotient
\begin{array}{l}\phantom{1000)}0\phantom{3}\\1000\overline{)1970}\\\end{array}
Use the 2^{nd} digit 9 from dividend 1970
\begin{array}{l}\phantom{1000)}00\phantom{4}\\1000\overline{)1970}\\\end{array}
Since 19 is less than 1000, use the next digit 7 from dividend 1970 and add 0 to the quotient
\begin{array}{l}\phantom{1000)}00\phantom{5}\\1000\overline{)1970}\\\end{array}
Use the 3^{rd} digit 7 from dividend 1970
\begin{array}{l}\phantom{1000)}000\phantom{6}\\1000\overline{)1970}\\\end{array}
Since 197 is less than 1000, use the next digit 0 from dividend 1970 and add 0 to the quotient
\begin{array}{l}\phantom{1000)}000\phantom{7}\\1000\overline{)1970}\\\end{array}
Use the 4^{th} digit 0 from dividend 1970
\begin{array}{l}\phantom{1000)}0001\phantom{8}\\1000\overline{)1970}\\\phantom{1000)}\underline{\phantom{}1000\phantom{}}\\\phantom{1000)9}970\\\end{array}
Find closest multiple of 1000 to 1970. We see that 1 \times 1000 = 1000 is the nearest. Now subtract 1000 from 1970 to get reminder 970. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }970
Since 970 is less than 1000, stop the division. The reminder is 970. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}