Solve for x
x=18
x=-18
Graph
Share
Copied to clipboard
\frac{13}{24}x^{2}=175.5
Reduce the fraction \frac{195}{360} to lowest terms by extracting and canceling out 15.
x^{2}=175.5\times \frac{24}{13}
Multiply both sides by \frac{24}{13}, the reciprocal of \frac{13}{24}.
x^{2}=324
Multiply 175.5 and \frac{24}{13} to get 324.
x=18 x=-18
Take the square root of both sides of the equation.
\frac{13}{24}x^{2}=175.5
Reduce the fraction \frac{195}{360} to lowest terms by extracting and canceling out 15.
\frac{13}{24}x^{2}-175.5=0
Subtract 175.5 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times \frac{13}{24}\left(-175.5\right)}}{2\times \frac{13}{24}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{13}{24} for a, 0 for b, and -175.5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{13}{24}\left(-175.5\right)}}{2\times \frac{13}{24}}
Square 0.
x=\frac{0±\sqrt{-\frac{13}{6}\left(-175.5\right)}}{2\times \frac{13}{24}}
Multiply -4 times \frac{13}{24}.
x=\frac{0±\sqrt{\frac{1521}{4}}}{2\times \frac{13}{24}}
Multiply -\frac{13}{6} times -175.5 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{0±\frac{39}{2}}{2\times \frac{13}{24}}
Take the square root of \frac{1521}{4}.
x=\frac{0±\frac{39}{2}}{\frac{13}{12}}
Multiply 2 times \frac{13}{24}.
x=18
Now solve the equation x=\frac{0±\frac{39}{2}}{\frac{13}{12}} when ± is plus.
x=-18
Now solve the equation x=\frac{0±\frac{39}{2}}{\frac{13}{12}} when ± is minus.
x=18 x=-18
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}