Evaluate
\frac{39}{20}=1.95
Factor
\frac{3 \cdot 13}{2 ^ {2} \cdot 5} = 1\frac{19}{20} = 1.95
Share
Copied to clipboard
\begin{array}{l}\phantom{100)}\phantom{1}\\100\overline{)195}\\\end{array}
Use the 1^{st} digit 1 from dividend 195
\begin{array}{l}\phantom{100)}0\phantom{2}\\100\overline{)195}\\\end{array}
Since 1 is less than 100, use the next digit 9 from dividend 195 and add 0 to the quotient
\begin{array}{l}\phantom{100)}0\phantom{3}\\100\overline{)195}\\\end{array}
Use the 2^{nd} digit 9 from dividend 195
\begin{array}{l}\phantom{100)}00\phantom{4}\\100\overline{)195}\\\end{array}
Since 19 is less than 100, use the next digit 5 from dividend 195 and add 0 to the quotient
\begin{array}{l}\phantom{100)}00\phantom{5}\\100\overline{)195}\\\end{array}
Use the 3^{rd} digit 5 from dividend 195
\begin{array}{l}\phantom{100)}001\phantom{6}\\100\overline{)195}\\\phantom{100)}\underline{\phantom{}100\phantom{}}\\\phantom{100)9}95\\\end{array}
Find closest multiple of 100 to 195. We see that 1 \times 100 = 100 is the nearest. Now subtract 100 from 195 to get reminder 95. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }95
Since 95 is less than 100, stop the division. The reminder is 95. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}