Evaluate
\frac{40915\sqrt{2}}{24}\approx 2410.939496021
Share
Copied to clipboard
35\times \frac{267.2}{19.2}\sqrt{\frac{9.8}{0.4}}
Add 19.2 and 248 to get 267.2.
35\times \frac{2672}{192}\sqrt{\frac{9.8}{0.4}}
Expand \frac{267.2}{19.2} by multiplying both numerator and the denominator by 10.
35\times \frac{167}{12}\sqrt{\frac{9.8}{0.4}}
Reduce the fraction \frac{2672}{192} to lowest terms by extracting and canceling out 16.
\frac{35\times 167}{12}\sqrt{\frac{9.8}{0.4}}
Express 35\times \frac{167}{12} as a single fraction.
\frac{5845}{12}\sqrt{\frac{9.8}{0.4}}
Multiply 35 and 167 to get 5845.
\frac{5845}{12}\sqrt{\frac{98}{4}}
Expand \frac{9.8}{0.4} by multiplying both numerator and the denominator by 10.
\frac{5845}{12}\sqrt{\frac{49}{2}}
Reduce the fraction \frac{98}{4} to lowest terms by extracting and canceling out 2.
\frac{5845}{12}\times \frac{\sqrt{49}}{\sqrt{2}}
Rewrite the square root of the division \sqrt{\frac{49}{2}} as the division of square roots \frac{\sqrt{49}}{\sqrt{2}}.
\frac{5845}{12}\times \frac{7}{\sqrt{2}}
Calculate the square root of 49 and get 7.
\frac{5845}{12}\times \frac{7\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{7}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{5845}{12}\times \frac{7\sqrt{2}}{2}
The square of \sqrt{2} is 2.
\frac{5845\times 7\sqrt{2}}{12\times 2}
Multiply \frac{5845}{12} times \frac{7\sqrt{2}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{40915\sqrt{2}}{12\times 2}
Multiply 5845 and 7 to get 40915.
\frac{40915\sqrt{2}}{24}
Multiply 12 and 2 to get 24.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}