\frac{ 19 }{ 56 } - \frac{ 1 }{ 72 } - \frac{ 10 }{ 84 } + \frac{ 8 }{ 63 } ==
Evaluate
\frac{1}{3}\approx 0.333333333
Factor
\frac{1}{3} = 0.3333333333333333
Share
Copied to clipboard
\frac{171}{504}-\frac{7}{504}-\frac{10}{84}+\frac{8}{63}
Least common multiple of 56 and 72 is 504. Convert \frac{19}{56} and \frac{1}{72} to fractions with denominator 504.
\frac{171-7}{504}-\frac{10}{84}+\frac{8}{63}
Since \frac{171}{504} and \frac{7}{504} have the same denominator, subtract them by subtracting their numerators.
\frac{164}{504}-\frac{10}{84}+\frac{8}{63}
Subtract 7 from 171 to get 164.
\frac{41}{126}-\frac{10}{84}+\frac{8}{63}
Reduce the fraction \frac{164}{504} to lowest terms by extracting and canceling out 4.
\frac{41}{126}-\frac{5}{42}+\frac{8}{63}
Reduce the fraction \frac{10}{84} to lowest terms by extracting and canceling out 2.
\frac{41}{126}-\frac{15}{126}+\frac{8}{63}
Least common multiple of 126 and 42 is 126. Convert \frac{41}{126} and \frac{5}{42} to fractions with denominator 126.
\frac{41-15}{126}+\frac{8}{63}
Since \frac{41}{126} and \frac{15}{126} have the same denominator, subtract them by subtracting their numerators.
\frac{26}{126}+\frac{8}{63}
Subtract 15 from 41 to get 26.
\frac{13}{63}+\frac{8}{63}
Reduce the fraction \frac{26}{126} to lowest terms by extracting and canceling out 2.
\frac{13+8}{63}
Since \frac{13}{63} and \frac{8}{63} have the same denominator, add them by adding their numerators.
\frac{21}{63}
Add 13 and 8 to get 21.
\frac{1}{3}
Reduce the fraction \frac{21}{63} to lowest terms by extracting and canceling out 21.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}