Evaluate
\frac{51}{40}=1.275
Factor
\frac{3 \cdot 17}{2 ^ {3} \cdot 5} = 1\frac{11}{40} = 1.275
Share
Copied to clipboard
\frac{19}{20}+\frac{24}{20}-\frac{7}{40}-\frac{7}{10}
Least common multiple of 20 and 5 is 20. Convert \frac{19}{20} and \frac{6}{5} to fractions with denominator 20.
\frac{19+24}{20}-\frac{7}{40}-\frac{7}{10}
Since \frac{19}{20} and \frac{24}{20} have the same denominator, add them by adding their numerators.
\frac{43}{20}-\frac{7}{40}-\frac{7}{10}
Add 19 and 24 to get 43.
\frac{86}{40}-\frac{7}{40}-\frac{7}{10}
Least common multiple of 20 and 40 is 40. Convert \frac{43}{20} and \frac{7}{40} to fractions with denominator 40.
\frac{86-7}{40}-\frac{7}{10}
Since \frac{86}{40} and \frac{7}{40} have the same denominator, subtract them by subtracting their numerators.
\frac{79}{40}-\frac{7}{10}
Subtract 7 from 86 to get 79.
\frac{79}{40}-\frac{28}{40}
Least common multiple of 40 and 10 is 40. Convert \frac{79}{40} and \frac{7}{10} to fractions with denominator 40.
\frac{79-28}{40}
Since \frac{79}{40} and \frac{28}{40} have the same denominator, subtract them by subtracting their numerators.
\frac{51}{40}
Subtract 28 from 79 to get 51.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}