Evaluate
\frac{180}{169}\approx 1.065088757
Factor
\frac{2 ^ {2} \cdot 3 ^ {2} \cdot 5}{13 ^ {2}} = 1\frac{11}{169} = 1.0650887573964498
Share
Copied to clipboard
\begin{array}{l}\phantom{169)}\phantom{1}\\169\overline{)180}\\\end{array}
Use the 1^{st} digit 1 from dividend 180
\begin{array}{l}\phantom{169)}0\phantom{2}\\169\overline{)180}\\\end{array}
Since 1 is less than 169, use the next digit 8 from dividend 180 and add 0 to the quotient
\begin{array}{l}\phantom{169)}0\phantom{3}\\169\overline{)180}\\\end{array}
Use the 2^{nd} digit 8 from dividend 180
\begin{array}{l}\phantom{169)}00\phantom{4}\\169\overline{)180}\\\end{array}
Since 18 is less than 169, use the next digit 0 from dividend 180 and add 0 to the quotient
\begin{array}{l}\phantom{169)}00\phantom{5}\\169\overline{)180}\\\end{array}
Use the 3^{rd} digit 0 from dividend 180
\begin{array}{l}\phantom{169)}001\phantom{6}\\169\overline{)180}\\\phantom{169)}\underline{\phantom{}169\phantom{}}\\\phantom{169)9}11\\\end{array}
Find closest multiple of 169 to 180. We see that 1 \times 169 = 169 is the nearest. Now subtract 169 from 180 to get reminder 11. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }11
Since 11 is less than 169, stop the division. The reminder is 11. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}