Evaluate
\frac{26875}{119}\approx 225.840336134
Factor
\frac{43 \cdot 5 ^ {4}}{7 \cdot 17} = 225\frac{100}{119} = 225.8403361344538
Share
Copied to clipboard
\frac{180}{\left(1-0.16\right)\left(1-\frac{22}{430}\right)}
Multiply 0.01 and 16 to get 0.16.
\frac{180}{0.84\left(1-\frac{22}{430}\right)}
Subtract 0.16 from 1 to get 0.84.
\frac{180}{0.84\left(1-\frac{11}{215}\right)}
Reduce the fraction \frac{22}{430} to lowest terms by extracting and canceling out 2.
\frac{180}{0.84\left(\frac{215}{215}-\frac{11}{215}\right)}
Convert 1 to fraction \frac{215}{215}.
\frac{180}{0.84\times \frac{215-11}{215}}
Since \frac{215}{215} and \frac{11}{215} have the same denominator, subtract them by subtracting their numerators.
\frac{180}{0.84\times \frac{204}{215}}
Subtract 11 from 215 to get 204.
\frac{180}{\frac{21}{25}\times \frac{204}{215}}
Convert decimal number 0.84 to fraction \frac{84}{100}. Reduce the fraction \frac{84}{100} to lowest terms by extracting and canceling out 4.
\frac{180}{\frac{21\times 204}{25\times 215}}
Multiply \frac{21}{25} times \frac{204}{215} by multiplying numerator times numerator and denominator times denominator.
\frac{180}{\frac{4284}{5375}}
Do the multiplications in the fraction \frac{21\times 204}{25\times 215}.
180\times \frac{5375}{4284}
Divide 180 by \frac{4284}{5375} by multiplying 180 by the reciprocal of \frac{4284}{5375}.
\frac{180\times 5375}{4284}
Express 180\times \frac{5375}{4284} as a single fraction.
\frac{967500}{4284}
Multiply 180 and 5375 to get 967500.
\frac{26875}{119}
Reduce the fraction \frac{967500}{4284} to lowest terms by extracting and canceling out 36.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}