Solve for x
x = \frac{31}{10} = 3\frac{1}{10} = 3.1
Graph
Share
Copied to clipboard
18-2=5\left(2x-3\right)
Variable x cannot be equal to \frac{3}{2} since division by zero is not defined. Multiply both sides of the equation by 2x-3, the least common multiple of 2x-3,3-2x.
16=5\left(2x-3\right)
Subtract 2 from 18 to get 16.
16=10x-15
Use the distributive property to multiply 5 by 2x-3.
10x-15=16
Swap sides so that all variable terms are on the left hand side.
10x=16+15
Add 15 to both sides.
10x=31
Add 16 and 15 to get 31.
x=\frac{31}{10}
Divide both sides by 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}