Evaluate
\frac{1742}{375}\approx 4.645333333
Factor
\frac{2 \cdot 13 \cdot 67}{3 \cdot 5 ^ {3}} = 4\frac{242}{375} = 4.645333333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{375)}\phantom{1}\\375\overline{)1742}\\\end{array}
Use the 1^{st} digit 1 from dividend 1742
\begin{array}{l}\phantom{375)}0\phantom{2}\\375\overline{)1742}\\\end{array}
Since 1 is less than 375, use the next digit 7 from dividend 1742 and add 0 to the quotient
\begin{array}{l}\phantom{375)}0\phantom{3}\\375\overline{)1742}\\\end{array}
Use the 2^{nd} digit 7 from dividend 1742
\begin{array}{l}\phantom{375)}00\phantom{4}\\375\overline{)1742}\\\end{array}
Since 17 is less than 375, use the next digit 4 from dividend 1742 and add 0 to the quotient
\begin{array}{l}\phantom{375)}00\phantom{5}\\375\overline{)1742}\\\end{array}
Use the 3^{rd} digit 4 from dividend 1742
\begin{array}{l}\phantom{375)}000\phantom{6}\\375\overline{)1742}\\\end{array}
Since 174 is less than 375, use the next digit 2 from dividend 1742 and add 0 to the quotient
\begin{array}{l}\phantom{375)}000\phantom{7}\\375\overline{)1742}\\\end{array}
Use the 4^{th} digit 2 from dividend 1742
\begin{array}{l}\phantom{375)}0004\phantom{8}\\375\overline{)1742}\\\phantom{375)}\underline{\phantom{}1500\phantom{}}\\\phantom{375)9}242\\\end{array}
Find closest multiple of 375 to 1742. We see that 4 \times 375 = 1500 is the nearest. Now subtract 1500 from 1742 to get reminder 242. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }242
Since 242 is less than 375, stop the division. The reminder is 242. The topmost line 0004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}