Evaluate
\frac{171}{11}\approx 15.545454545
Factor
\frac{3 ^ {2} \cdot 19}{11} = 15\frac{6}{11} = 15.545454545454545
Share
Copied to clipboard
\begin{array}{l}\phantom{11)}\phantom{1}\\11\overline{)171}\\\end{array}
Use the 1^{st} digit 1 from dividend 171
\begin{array}{l}\phantom{11)}0\phantom{2}\\11\overline{)171}\\\end{array}
Since 1 is less than 11, use the next digit 7 from dividend 171 and add 0 to the quotient
\begin{array}{l}\phantom{11)}0\phantom{3}\\11\overline{)171}\\\end{array}
Use the 2^{nd} digit 7 from dividend 171
\begin{array}{l}\phantom{11)}01\phantom{4}\\11\overline{)171}\\\phantom{11)}\underline{\phantom{}11\phantom{9}}\\\phantom{11)9}6\\\end{array}
Find closest multiple of 11 to 17. We see that 1 \times 11 = 11 is the nearest. Now subtract 11 from 17 to get reminder 6. Add 1 to quotient.
\begin{array}{l}\phantom{11)}01\phantom{5}\\11\overline{)171}\\\phantom{11)}\underline{\phantom{}11\phantom{9}}\\\phantom{11)9}61\\\end{array}
Use the 3^{rd} digit 1 from dividend 171
\begin{array}{l}\phantom{11)}015\phantom{6}\\11\overline{)171}\\\phantom{11)}\underline{\phantom{}11\phantom{9}}\\\phantom{11)9}61\\\phantom{11)}\underline{\phantom{9}55\phantom{}}\\\phantom{11)99}6\\\end{array}
Find closest multiple of 11 to 61. We see that 5 \times 11 = 55 is the nearest. Now subtract 55 from 61 to get reminder 6. Add 5 to quotient.
\text{Quotient: }15 \text{Reminder: }6
Since 6 is less than 11, stop the division. The reminder is 6. The topmost line 015 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}