Evaluate
\frac{28}{25}=1.12
Factor
\frac{2 ^ {2} \cdot 7}{5 ^ {2}} = 1\frac{3}{25} = 1.12
Share
Copied to clipboard
\begin{array}{l}\phantom{150)}\phantom{1}\\150\overline{)168}\\\end{array}
Use the 1^{st} digit 1 from dividend 168
\begin{array}{l}\phantom{150)}0\phantom{2}\\150\overline{)168}\\\end{array}
Since 1 is less than 150, use the next digit 6 from dividend 168 and add 0 to the quotient
\begin{array}{l}\phantom{150)}0\phantom{3}\\150\overline{)168}\\\end{array}
Use the 2^{nd} digit 6 from dividend 168
\begin{array}{l}\phantom{150)}00\phantom{4}\\150\overline{)168}\\\end{array}
Since 16 is less than 150, use the next digit 8 from dividend 168 and add 0 to the quotient
\begin{array}{l}\phantom{150)}00\phantom{5}\\150\overline{)168}\\\end{array}
Use the 3^{rd} digit 8 from dividend 168
\begin{array}{l}\phantom{150)}001\phantom{6}\\150\overline{)168}\\\phantom{150)}\underline{\phantom{}150\phantom{}}\\\phantom{150)9}18\\\end{array}
Find closest multiple of 150 to 168. We see that 1 \times 150 = 150 is the nearest. Now subtract 150 from 168 to get reminder 18. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }18
Since 18 is less than 150, stop the division. The reminder is 18. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}