\frac{ 1650 \times \frac{ x }{ 10 } -900 }{ 900 } \geq 10 \%
Solve for x
x\geq 6
Graph
Share
Copied to clipboard
1650\times \frac{x}{10}-900\geq 9\times 10
Multiply both sides of the equation by 900, the least common multiple of 900,100. Since 900 is positive, the inequality direction remains the same.
165x-900\geq 9\times 10
Cancel out 10, the greatest common factor in 1650 and 10.
165x-900\geq 90
Multiply 9 and 10 to get 90.
165x\geq 90+900
Add 900 to both sides.
165x\geq 990
Add 90 and 900 to get 990.
x\geq \frac{990}{165}
Divide both sides by 165. Since 165 is positive, the inequality direction remains the same.
x\geq 6
Divide 990 by 165 to get 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}