Solve for x (complex solution)
x=-200+200\sqrt{23}i\approx -200+959.166304663i
x=-200\sqrt{23}i-200\approx -200-959.166304663i
Graph
Share
Copied to clipboard
3x\times 1600-\left(3x+1200\right)\times 1600=2x\left(x+400\right)
Variable x cannot be equal to any of the values -400,0 since division by zero is not defined. Multiply both sides of the equation by 3x\left(x+400\right), the least common multiple of x+400,x,3.
4800x-\left(3x+1200\right)\times 1600=2x\left(x+400\right)
Multiply 3 and 1600 to get 4800.
4800x-\left(4800x+1920000\right)=2x\left(x+400\right)
Use the distributive property to multiply 3x+1200 by 1600.
4800x-4800x-1920000=2x\left(x+400\right)
To find the opposite of 4800x+1920000, find the opposite of each term.
-1920000=2x\left(x+400\right)
Combine 4800x and -4800x to get 0.
-1920000=2x^{2}+800x
Use the distributive property to multiply 2x by x+400.
2x^{2}+800x=-1920000
Swap sides so that all variable terms are on the left hand side.
2x^{2}+800x+1920000=0
Add 1920000 to both sides.
x=\frac{-800±\sqrt{800^{2}-4\times 2\times 1920000}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 800 for b, and 1920000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-800±\sqrt{640000-4\times 2\times 1920000}}{2\times 2}
Square 800.
x=\frac{-800±\sqrt{640000-8\times 1920000}}{2\times 2}
Multiply -4 times 2.
x=\frac{-800±\sqrt{640000-15360000}}{2\times 2}
Multiply -8 times 1920000.
x=\frac{-800±\sqrt{-14720000}}{2\times 2}
Add 640000 to -15360000.
x=\frac{-800±800\sqrt{23}i}{2\times 2}
Take the square root of -14720000.
x=\frac{-800±800\sqrt{23}i}{4}
Multiply 2 times 2.
x=\frac{-800+800\sqrt{23}i}{4}
Now solve the equation x=\frac{-800±800\sqrt{23}i}{4} when ± is plus. Add -800 to 800i\sqrt{23}.
x=-200+200\sqrt{23}i
Divide -800+800i\sqrt{23} by 4.
x=\frac{-800\sqrt{23}i-800}{4}
Now solve the equation x=\frac{-800±800\sqrt{23}i}{4} when ± is minus. Subtract 800i\sqrt{23} from -800.
x=-200\sqrt{23}i-200
Divide -800-800i\sqrt{23} by 4.
x=-200+200\sqrt{23}i x=-200\sqrt{23}i-200
The equation is now solved.
3x\times 1600-\left(3x+1200\right)\times 1600=2x\left(x+400\right)
Variable x cannot be equal to any of the values -400,0 since division by zero is not defined. Multiply both sides of the equation by 3x\left(x+400\right), the least common multiple of x+400,x,3.
4800x-\left(3x+1200\right)\times 1600=2x\left(x+400\right)
Multiply 3 and 1600 to get 4800.
4800x-\left(4800x+1920000\right)=2x\left(x+400\right)
Use the distributive property to multiply 3x+1200 by 1600.
4800x-4800x-1920000=2x\left(x+400\right)
To find the opposite of 4800x+1920000, find the opposite of each term.
-1920000=2x\left(x+400\right)
Combine 4800x and -4800x to get 0.
-1920000=2x^{2}+800x
Use the distributive property to multiply 2x by x+400.
2x^{2}+800x=-1920000
Swap sides so that all variable terms are on the left hand side.
\frac{2x^{2}+800x}{2}=-\frac{1920000}{2}
Divide both sides by 2.
x^{2}+\frac{800}{2}x=-\frac{1920000}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+400x=-\frac{1920000}{2}
Divide 800 by 2.
x^{2}+400x=-960000
Divide -1920000 by 2.
x^{2}+400x+200^{2}=-960000+200^{2}
Divide 400, the coefficient of the x term, by 2 to get 200. Then add the square of 200 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+400x+40000=-960000+40000
Square 200.
x^{2}+400x+40000=-920000
Add -960000 to 40000.
\left(x+200\right)^{2}=-920000
Factor x^{2}+400x+40000. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+200\right)^{2}}=\sqrt{-920000}
Take the square root of both sides of the equation.
x+200=200\sqrt{23}i x+200=-200\sqrt{23}i
Simplify.
x=-200+200\sqrt{23}i x=-200\sqrt{23}i-200
Subtract 200 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}