Evaluate
-\frac{104}{625}-\frac{447}{625}i=-0.1664-0.7152i
Real Part
-\frac{104}{625} = -0.1664
Share
Copied to clipboard
\frac{\left(16-9i\right)\left(7-24i\right)}{\left(7+24i\right)\left(7-24i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 7-24i.
\frac{\left(16-9i\right)\left(7-24i\right)}{7^{2}-24^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(16-9i\right)\left(7-24i\right)}{625}
By definition, i^{2} is -1. Calculate the denominator.
\frac{16\times 7+16\times \left(-24i\right)-9i\times 7-9\left(-24\right)i^{2}}{625}
Multiply complex numbers 16-9i and 7-24i like you multiply binomials.
\frac{16\times 7+16\times \left(-24i\right)-9i\times 7-9\left(-24\right)\left(-1\right)}{625}
By definition, i^{2} is -1.
\frac{112-384i-63i-216}{625}
Do the multiplications in 16\times 7+16\times \left(-24i\right)-9i\times 7-9\left(-24\right)\left(-1\right).
\frac{112-216+\left(-384-63\right)i}{625}
Combine the real and imaginary parts in 112-384i-63i-216.
\frac{-104-447i}{625}
Do the additions in 112-216+\left(-384-63\right)i.
-\frac{104}{625}-\frac{447}{625}i
Divide -104-447i by 625 to get -\frac{104}{625}-\frac{447}{625}i.
Re(\frac{\left(16-9i\right)\left(7-24i\right)}{\left(7+24i\right)\left(7-24i\right)})
Multiply both numerator and denominator of \frac{16-9i}{7+24i} by the complex conjugate of the denominator, 7-24i.
Re(\frac{\left(16-9i\right)\left(7-24i\right)}{7^{2}-24^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(16-9i\right)\left(7-24i\right)}{625})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{16\times 7+16\times \left(-24i\right)-9i\times 7-9\left(-24\right)i^{2}}{625})
Multiply complex numbers 16-9i and 7-24i like you multiply binomials.
Re(\frac{16\times 7+16\times \left(-24i\right)-9i\times 7-9\left(-24\right)\left(-1\right)}{625})
By definition, i^{2} is -1.
Re(\frac{112-384i-63i-216}{625})
Do the multiplications in 16\times 7+16\times \left(-24i\right)-9i\times 7-9\left(-24\right)\left(-1\right).
Re(\frac{112-216+\left(-384-63\right)i}{625})
Combine the real and imaginary parts in 112-384i-63i-216.
Re(\frac{-104-447i}{625})
Do the additions in 112-216+\left(-384-63\right)i.
Re(-\frac{104}{625}-\frac{447}{625}i)
Divide -104-447i by 625 to get -\frac{104}{625}-\frac{447}{625}i.
-\frac{104}{625}
The real part of -\frac{104}{625}-\frac{447}{625}i is -\frac{104}{625}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}