Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(16-9i\right)\left(7-24i\right)}{\left(7+24i\right)\left(7-24i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 7-24i.
\frac{\left(16-9i\right)\left(7-24i\right)}{7^{2}-24^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(16-9i\right)\left(7-24i\right)}{625}
By definition, i^{2} is -1. Calculate the denominator.
\frac{16\times 7+16\times \left(-24i\right)-9i\times 7-9\left(-24\right)i^{2}}{625}
Multiply complex numbers 16-9i and 7-24i like you multiply binomials.
\frac{16\times 7+16\times \left(-24i\right)-9i\times 7-9\left(-24\right)\left(-1\right)}{625}
By definition, i^{2} is -1.
\frac{112-384i-63i-216}{625}
Do the multiplications in 16\times 7+16\times \left(-24i\right)-9i\times 7-9\left(-24\right)\left(-1\right).
\frac{112-216+\left(-384-63\right)i}{625}
Combine the real and imaginary parts in 112-384i-63i-216.
\frac{-104-447i}{625}
Do the additions in 112-216+\left(-384-63\right)i.
-\frac{104}{625}-\frac{447}{625}i
Divide -104-447i by 625 to get -\frac{104}{625}-\frac{447}{625}i.
Re(\frac{\left(16-9i\right)\left(7-24i\right)}{\left(7+24i\right)\left(7-24i\right)})
Multiply both numerator and denominator of \frac{16-9i}{7+24i} by the complex conjugate of the denominator, 7-24i.
Re(\frac{\left(16-9i\right)\left(7-24i\right)}{7^{2}-24^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(16-9i\right)\left(7-24i\right)}{625})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{16\times 7+16\times \left(-24i\right)-9i\times 7-9\left(-24\right)i^{2}}{625})
Multiply complex numbers 16-9i and 7-24i like you multiply binomials.
Re(\frac{16\times 7+16\times \left(-24i\right)-9i\times 7-9\left(-24\right)\left(-1\right)}{625})
By definition, i^{2} is -1.
Re(\frac{112-384i-63i-216}{625})
Do the multiplications in 16\times 7+16\times \left(-24i\right)-9i\times 7-9\left(-24\right)\left(-1\right).
Re(\frac{112-216+\left(-384-63\right)i}{625})
Combine the real and imaginary parts in 112-384i-63i-216.
Re(\frac{-104-447i}{625})
Do the additions in 112-216+\left(-384-63\right)i.
Re(-\frac{104}{625}-\frac{447}{625}i)
Divide -104-447i by 625 to get -\frac{104}{625}-\frac{447}{625}i.
-\frac{104}{625}
The real part of -\frac{104}{625}-\frac{447}{625}i is -\frac{104}{625}.