Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{16\left(81x^{8}-10000y^{4}\right)}{50625}
Factor out \frac{16}{50625}.
\left(9x^{4}-100y^{2}\right)\left(9x^{4}+100y^{2}\right)
Consider 81x^{8}-10000y^{4}. Rewrite 81x^{8}-10000y^{4} as \left(9x^{4}\right)^{2}-\left(100y^{2}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(3x^{2}-10y\right)\left(3x^{2}+10y\right)
Consider 9x^{4}-100y^{2}. Rewrite 9x^{4}-100y^{2} as \left(3x^{2}\right)^{2}-\left(10y\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\frac{16\left(3x^{2}-10y\right)\left(3x^{2}+10y\right)\left(9x^{4}+100y^{2}\right)}{50625}
Rewrite the complete factored expression.
\frac{81\times 16x^{8}}{50625}-\frac{625\times 256y^{4}}{50625}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 625 and 81 is 50625. Multiply \frac{16x^{8}}{625} times \frac{81}{81}. Multiply \frac{256y^{4}}{81} times \frac{625}{625}.
\frac{81\times 16x^{8}-625\times 256y^{4}}{50625}
Since \frac{81\times 16x^{8}}{50625} and \frac{625\times 256y^{4}}{50625} have the same denominator, subtract them by subtracting their numerators.
\frac{1296x^{8}-160000y^{4}}{50625}
Do the multiplications in 81\times 16x^{8}-625\times 256y^{4}.