Solve for x
x=-\frac{1}{3}\approx -0.333333333
x=7
Graph
Share
Copied to clipboard
\left(3x-1\right)\times 16-\left(-\left(3+x\right)\times 8\right)=2\left(3x-1\right)\left(x+3\right)
Variable x cannot be equal to any of the values -3,\frac{1}{3} since division by zero is not defined. Multiply both sides of the equation by \left(3x-1\right)\left(x+3\right), the least common multiple of x+3,1-3x.
48x-16-\left(-\left(3+x\right)\times 8\right)=2\left(3x-1\right)\left(x+3\right)
Use the distributive property to multiply 3x-1 by 16.
48x-16-\left(-8\left(3+x\right)\right)=2\left(3x-1\right)\left(x+3\right)
Multiply -1 and 8 to get -8.
48x-16-\left(-24-8x\right)=2\left(3x-1\right)\left(x+3\right)
Use the distributive property to multiply -8 by 3+x.
48x-16+24+8x=2\left(3x-1\right)\left(x+3\right)
To find the opposite of -24-8x, find the opposite of each term.
48x+8+8x=2\left(3x-1\right)\left(x+3\right)
Add -16 and 24 to get 8.
56x+8=2\left(3x-1\right)\left(x+3\right)
Combine 48x and 8x to get 56x.
56x+8=\left(6x-2\right)\left(x+3\right)
Use the distributive property to multiply 2 by 3x-1.
56x+8=6x^{2}+16x-6
Use the distributive property to multiply 6x-2 by x+3 and combine like terms.
56x+8-6x^{2}=16x-6
Subtract 6x^{2} from both sides.
56x+8-6x^{2}-16x=-6
Subtract 16x from both sides.
40x+8-6x^{2}=-6
Combine 56x and -16x to get 40x.
40x+8-6x^{2}+6=0
Add 6 to both sides.
40x+14-6x^{2}=0
Add 8 and 6 to get 14.
-6x^{2}+40x+14=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-40±\sqrt{40^{2}-4\left(-6\right)\times 14}}{2\left(-6\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -6 for a, 40 for b, and 14 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-40±\sqrt{1600-4\left(-6\right)\times 14}}{2\left(-6\right)}
Square 40.
x=\frac{-40±\sqrt{1600+24\times 14}}{2\left(-6\right)}
Multiply -4 times -6.
x=\frac{-40±\sqrt{1600+336}}{2\left(-6\right)}
Multiply 24 times 14.
x=\frac{-40±\sqrt{1936}}{2\left(-6\right)}
Add 1600 to 336.
x=\frac{-40±44}{2\left(-6\right)}
Take the square root of 1936.
x=\frac{-40±44}{-12}
Multiply 2 times -6.
x=\frac{4}{-12}
Now solve the equation x=\frac{-40±44}{-12} when ± is plus. Add -40 to 44.
x=-\frac{1}{3}
Reduce the fraction \frac{4}{-12} to lowest terms by extracting and canceling out 4.
x=-\frac{84}{-12}
Now solve the equation x=\frac{-40±44}{-12} when ± is minus. Subtract 44 from -40.
x=7
Divide -84 by -12.
x=-\frac{1}{3} x=7
The equation is now solved.
\left(3x-1\right)\times 16-\left(-\left(3+x\right)\times 8\right)=2\left(3x-1\right)\left(x+3\right)
Variable x cannot be equal to any of the values -3,\frac{1}{3} since division by zero is not defined. Multiply both sides of the equation by \left(3x-1\right)\left(x+3\right), the least common multiple of x+3,1-3x.
48x-16-\left(-\left(3+x\right)\times 8\right)=2\left(3x-1\right)\left(x+3\right)
Use the distributive property to multiply 3x-1 by 16.
48x-16-\left(-8\left(3+x\right)\right)=2\left(3x-1\right)\left(x+3\right)
Multiply -1 and 8 to get -8.
48x-16-\left(-24-8x\right)=2\left(3x-1\right)\left(x+3\right)
Use the distributive property to multiply -8 by 3+x.
48x-16+24+8x=2\left(3x-1\right)\left(x+3\right)
To find the opposite of -24-8x, find the opposite of each term.
48x+8+8x=2\left(3x-1\right)\left(x+3\right)
Add -16 and 24 to get 8.
56x+8=2\left(3x-1\right)\left(x+3\right)
Combine 48x and 8x to get 56x.
56x+8=\left(6x-2\right)\left(x+3\right)
Use the distributive property to multiply 2 by 3x-1.
56x+8=6x^{2}+16x-6
Use the distributive property to multiply 6x-2 by x+3 and combine like terms.
56x+8-6x^{2}=16x-6
Subtract 6x^{2} from both sides.
56x+8-6x^{2}-16x=-6
Subtract 16x from both sides.
40x+8-6x^{2}=-6
Combine 56x and -16x to get 40x.
40x-6x^{2}=-6-8
Subtract 8 from both sides.
40x-6x^{2}=-14
Subtract 8 from -6 to get -14.
-6x^{2}+40x=-14
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-6x^{2}+40x}{-6}=-\frac{14}{-6}
Divide both sides by -6.
x^{2}+\frac{40}{-6}x=-\frac{14}{-6}
Dividing by -6 undoes the multiplication by -6.
x^{2}-\frac{20}{3}x=-\frac{14}{-6}
Reduce the fraction \frac{40}{-6} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{20}{3}x=\frac{7}{3}
Reduce the fraction \frac{-14}{-6} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{20}{3}x+\left(-\frac{10}{3}\right)^{2}=\frac{7}{3}+\left(-\frac{10}{3}\right)^{2}
Divide -\frac{20}{3}, the coefficient of the x term, by 2 to get -\frac{10}{3}. Then add the square of -\frac{10}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{20}{3}x+\frac{100}{9}=\frac{7}{3}+\frac{100}{9}
Square -\frac{10}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{20}{3}x+\frac{100}{9}=\frac{121}{9}
Add \frac{7}{3} to \frac{100}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{10}{3}\right)^{2}=\frac{121}{9}
Factor x^{2}-\frac{20}{3}x+\frac{100}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{10}{3}\right)^{2}}=\sqrt{\frac{121}{9}}
Take the square root of both sides of the equation.
x-\frac{10}{3}=\frac{11}{3} x-\frac{10}{3}=-\frac{11}{3}
Simplify.
x=7 x=-\frac{1}{3}
Add \frac{10}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}