Solve for x
x = \frac{163840}{127} = 1290\frac{10}{127} \approx 1290.078740157
Graph
Share
Copied to clipboard
12800\times 16=\frac{127}{512}\times 128x\times 5
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 12800x, the least common multiple of x,512,100.
204800=\frac{127}{512}\times 128x\times 5
Multiply 12800 and 16 to get 204800.
204800=\frac{127\times 128}{512}x\times 5
Express \frac{127}{512}\times 128 as a single fraction.
204800=\frac{16256}{512}x\times 5
Multiply 127 and 128 to get 16256.
204800=\frac{127}{4}x\times 5
Reduce the fraction \frac{16256}{512} to lowest terms by extracting and canceling out 128.
204800=\frac{127\times 5}{4}x
Express \frac{127}{4}\times 5 as a single fraction.
204800=\frac{635}{4}x
Multiply 127 and 5 to get 635.
\frac{635}{4}x=204800
Swap sides so that all variable terms are on the left hand side.
x=204800\times \frac{4}{635}
Multiply both sides by \frac{4}{635}, the reciprocal of \frac{635}{4}.
x=\frac{204800\times 4}{635}
Express 204800\times \frac{4}{635} as a single fraction.
x=\frac{819200}{635}
Multiply 204800 and 4 to get 819200.
x=\frac{163840}{127}
Reduce the fraction \frac{819200}{635} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}