Evaluate
\frac{3209}{4428}\approx 0.724706414
Factor
\frac{3209}{2 ^ {2} \cdot 3 ^ {3} \cdot 41} = 0.724706413730804
Share
Copied to clipboard
\frac{16}{27}+\frac{2}{41}+\frac{2}{24}
Reduce the fraction \frac{4}{82} to lowest terms by extracting and canceling out 2.
\frac{656}{1107}+\frac{54}{1107}+\frac{2}{24}
Least common multiple of 27 and 41 is 1107. Convert \frac{16}{27} and \frac{2}{41} to fractions with denominator 1107.
\frac{656+54}{1107}+\frac{2}{24}
Since \frac{656}{1107} and \frac{54}{1107} have the same denominator, add them by adding their numerators.
\frac{710}{1107}+\frac{2}{24}
Add 656 and 54 to get 710.
\frac{710}{1107}+\frac{1}{12}
Reduce the fraction \frac{2}{24} to lowest terms by extracting and canceling out 2.
\frac{2840}{4428}+\frac{369}{4428}
Least common multiple of 1107 and 12 is 4428. Convert \frac{710}{1107} and \frac{1}{12} to fractions with denominator 4428.
\frac{2840+369}{4428}
Since \frac{2840}{4428} and \frac{369}{4428} have the same denominator, add them by adding their numerators.
\frac{3209}{4428}
Add 2840 and 369 to get 3209.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}