Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{16}{25}x^{2}-\frac{37}{5}x+16=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{37}{5}\right)±\sqrt{\left(-\frac{37}{5}\right)^{2}-4\times \frac{16}{25}\times 16}}{2\times \frac{16}{25}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{16}{25} for a, -\frac{37}{5} for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{37}{5}\right)±\sqrt{\frac{1369}{25}-4\times \frac{16}{25}\times 16}}{2\times \frac{16}{25}}
Square -\frac{37}{5} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{37}{5}\right)±\sqrt{\frac{1369}{25}-\frac{64}{25}\times 16}}{2\times \frac{16}{25}}
Multiply -4 times \frac{16}{25}.
x=\frac{-\left(-\frac{37}{5}\right)±\sqrt{\frac{1369-1024}{25}}}{2\times \frac{16}{25}}
Multiply -\frac{64}{25} times 16.
x=\frac{-\left(-\frac{37}{5}\right)±\sqrt{\frac{69}{5}}}{2\times \frac{16}{25}}
Add \frac{1369}{25} to -\frac{1024}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{37}{5}\right)±\frac{\sqrt{345}}{5}}{2\times \frac{16}{25}}
Take the square root of \frac{69}{5}.
x=\frac{\frac{37}{5}±\frac{\sqrt{345}}{5}}{2\times \frac{16}{25}}
The opposite of -\frac{37}{5} is \frac{37}{5}.
x=\frac{\frac{37}{5}±\frac{\sqrt{345}}{5}}{\frac{32}{25}}
Multiply 2 times \frac{16}{25}.
x=\frac{\sqrt{345}+37}{\frac{32}{25}\times 5}
Now solve the equation x=\frac{\frac{37}{5}±\frac{\sqrt{345}}{5}}{\frac{32}{25}} when ± is plus. Add \frac{37}{5} to \frac{\sqrt{345}}{5}.
x=\frac{5\sqrt{345}+185}{32}
Divide \frac{37+\sqrt{345}}{5} by \frac{32}{25} by multiplying \frac{37+\sqrt{345}}{5} by the reciprocal of \frac{32}{25}.
x=\frac{37-\sqrt{345}}{\frac{32}{25}\times 5}
Now solve the equation x=\frac{\frac{37}{5}±\frac{\sqrt{345}}{5}}{\frac{32}{25}} when ± is minus. Subtract \frac{\sqrt{345}}{5} from \frac{37}{5}.
x=\frac{185-5\sqrt{345}}{32}
Divide \frac{37-\sqrt{345}}{5} by \frac{32}{25} by multiplying \frac{37-\sqrt{345}}{5} by the reciprocal of \frac{32}{25}.
x=\frac{5\sqrt{345}+185}{32} x=\frac{185-5\sqrt{345}}{32}
The equation is now solved.
\frac{16}{25}x^{2}-\frac{37}{5}x+16=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{16}{25}x^{2}-\frac{37}{5}x+16-16=-16
Subtract 16 from both sides of the equation.
\frac{16}{25}x^{2}-\frac{37}{5}x=-16
Subtracting 16 from itself leaves 0.
\frac{\frac{16}{25}x^{2}-\frac{37}{5}x}{\frac{16}{25}}=-\frac{16}{\frac{16}{25}}
Divide both sides of the equation by \frac{16}{25}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{\frac{37}{5}}{\frac{16}{25}}\right)x=-\frac{16}{\frac{16}{25}}
Dividing by \frac{16}{25} undoes the multiplication by \frac{16}{25}.
x^{2}-\frac{185}{16}x=-\frac{16}{\frac{16}{25}}
Divide -\frac{37}{5} by \frac{16}{25} by multiplying -\frac{37}{5} by the reciprocal of \frac{16}{25}.
x^{2}-\frac{185}{16}x=-25
Divide -16 by \frac{16}{25} by multiplying -16 by the reciprocal of \frac{16}{25}.
x^{2}-\frac{185}{16}x+\left(-\frac{185}{32}\right)^{2}=-25+\left(-\frac{185}{32}\right)^{2}
Divide -\frac{185}{16}, the coefficient of the x term, by 2 to get -\frac{185}{32}. Then add the square of -\frac{185}{32} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{185}{16}x+\frac{34225}{1024}=-25+\frac{34225}{1024}
Square -\frac{185}{32} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{185}{16}x+\frac{34225}{1024}=\frac{8625}{1024}
Add -25 to \frac{34225}{1024}.
\left(x-\frac{185}{32}\right)^{2}=\frac{8625}{1024}
Factor x^{2}-\frac{185}{16}x+\frac{34225}{1024}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{185}{32}\right)^{2}}=\sqrt{\frac{8625}{1024}}
Take the square root of both sides of the equation.
x-\frac{185}{32}=\frac{5\sqrt{345}}{32} x-\frac{185}{32}=-\frac{5\sqrt{345}}{32}
Simplify.
x=\frac{5\sqrt{345}+185}{32} x=\frac{185-5\sqrt{345}}{32}
Add \frac{185}{32} to both sides of the equation.