Evaluate
2\left(\sqrt{6}-\sqrt{2}\right)\approx 2.070552361
Share
Copied to clipboard
\frac{16\left(2\sqrt{2}-2\sqrt{6}\right)}{\left(2\sqrt{2}+2\sqrt{6}\right)\left(2\sqrt{2}-2\sqrt{6}\right)}
Rationalize the denominator of \frac{16}{2\sqrt{2}+2\sqrt{6}} by multiplying numerator and denominator by 2\sqrt{2}-2\sqrt{6}.
\frac{16\left(2\sqrt{2}-2\sqrt{6}\right)}{\left(2\sqrt{2}\right)^{2}-\left(2\sqrt{6}\right)^{2}}
Consider \left(2\sqrt{2}+2\sqrt{6}\right)\left(2\sqrt{2}-2\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{16\left(2\sqrt{2}-2\sqrt{6}\right)}{2^{2}\left(\sqrt{2}\right)^{2}-\left(2\sqrt{6}\right)^{2}}
Expand \left(2\sqrt{2}\right)^{2}.
\frac{16\left(2\sqrt{2}-2\sqrt{6}\right)}{4\left(\sqrt{2}\right)^{2}-\left(2\sqrt{6}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{16\left(2\sqrt{2}-2\sqrt{6}\right)}{4\times 2-\left(2\sqrt{6}\right)^{2}}
The square of \sqrt{2} is 2.
\frac{16\left(2\sqrt{2}-2\sqrt{6}\right)}{8-\left(2\sqrt{6}\right)^{2}}
Multiply 4 and 2 to get 8.
\frac{16\left(2\sqrt{2}-2\sqrt{6}\right)}{8-2^{2}\left(\sqrt{6}\right)^{2}}
Expand \left(2\sqrt{6}\right)^{2}.
\frac{16\left(2\sqrt{2}-2\sqrt{6}\right)}{8-4\left(\sqrt{6}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{16\left(2\sqrt{2}-2\sqrt{6}\right)}{8-4\times 6}
The square of \sqrt{6} is 6.
\frac{16\left(2\sqrt{2}-2\sqrt{6}\right)}{8-24}
Multiply 4 and 6 to get 24.
\frac{16\left(2\sqrt{2}-2\sqrt{6}\right)}{-16}
Subtract 24 from 8 to get -16.
-\left(2\sqrt{2}-2\sqrt{6}\right)
Cancel out -16 and -16.
-2\sqrt{2}-\left(-2\sqrt{6}\right)
To find the opposite of 2\sqrt{2}-2\sqrt{6}, find the opposite of each term.
-2\sqrt{2}+2\sqrt{6}
The opposite of -2\sqrt{6} is 2\sqrt{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}