Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{16\left(2\sqrt{2}-2\sqrt{6}\right)}{\left(2\sqrt{2}+2\sqrt{6}\right)\left(2\sqrt{2}-2\sqrt{6}\right)}
Rationalize the denominator of \frac{16}{2\sqrt{2}+2\sqrt{6}} by multiplying numerator and denominator by 2\sqrt{2}-2\sqrt{6}.
\frac{16\left(2\sqrt{2}-2\sqrt{6}\right)}{\left(2\sqrt{2}\right)^{2}-\left(2\sqrt{6}\right)^{2}}
Consider \left(2\sqrt{2}+2\sqrt{6}\right)\left(2\sqrt{2}-2\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{16\left(2\sqrt{2}-2\sqrt{6}\right)}{2^{2}\left(\sqrt{2}\right)^{2}-\left(2\sqrt{6}\right)^{2}}
Expand \left(2\sqrt{2}\right)^{2}.
\frac{16\left(2\sqrt{2}-2\sqrt{6}\right)}{4\left(\sqrt{2}\right)^{2}-\left(2\sqrt{6}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{16\left(2\sqrt{2}-2\sqrt{6}\right)}{4\times 2-\left(2\sqrt{6}\right)^{2}}
The square of \sqrt{2} is 2.
\frac{16\left(2\sqrt{2}-2\sqrt{6}\right)}{8-\left(2\sqrt{6}\right)^{2}}
Multiply 4 and 2 to get 8.
\frac{16\left(2\sqrt{2}-2\sqrt{6}\right)}{8-2^{2}\left(\sqrt{6}\right)^{2}}
Expand \left(2\sqrt{6}\right)^{2}.
\frac{16\left(2\sqrt{2}-2\sqrt{6}\right)}{8-4\left(\sqrt{6}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{16\left(2\sqrt{2}-2\sqrt{6}\right)}{8-4\times 6}
The square of \sqrt{6} is 6.
\frac{16\left(2\sqrt{2}-2\sqrt{6}\right)}{8-24}
Multiply 4 and 6 to get 24.
\frac{16\left(2\sqrt{2}-2\sqrt{6}\right)}{-16}
Subtract 24 from 8 to get -16.
-\left(2\sqrt{2}-2\sqrt{6}\right)
Cancel out -16 and -16.
-2\sqrt{2}-\left(-2\sqrt{6}\right)
To find the opposite of 2\sqrt{2}-2\sqrt{6}, find the opposite of each term.
-2\sqrt{2}+2\sqrt{6}
The opposite of -2\sqrt{6} is 2\sqrt{6}.