Evaluate
\frac{39}{5}=7.8
Factor
\frac{3 \cdot 13}{5} = 7\frac{4}{5} = 7.8
Share
Copied to clipboard
\begin{array}{l}\phantom{200)}\phantom{1}\\200\overline{)1560}\\\end{array}
Use the 1^{st} digit 1 from dividend 1560
\begin{array}{l}\phantom{200)}0\phantom{2}\\200\overline{)1560}\\\end{array}
Since 1 is less than 200, use the next digit 5 from dividend 1560 and add 0 to the quotient
\begin{array}{l}\phantom{200)}0\phantom{3}\\200\overline{)1560}\\\end{array}
Use the 2^{nd} digit 5 from dividend 1560
\begin{array}{l}\phantom{200)}00\phantom{4}\\200\overline{)1560}\\\end{array}
Since 15 is less than 200, use the next digit 6 from dividend 1560 and add 0 to the quotient
\begin{array}{l}\phantom{200)}00\phantom{5}\\200\overline{)1560}\\\end{array}
Use the 3^{rd} digit 6 from dividend 1560
\begin{array}{l}\phantom{200)}000\phantom{6}\\200\overline{)1560}\\\end{array}
Since 156 is less than 200, use the next digit 0 from dividend 1560 and add 0 to the quotient
\begin{array}{l}\phantom{200)}000\phantom{7}\\200\overline{)1560}\\\end{array}
Use the 4^{th} digit 0 from dividend 1560
\begin{array}{l}\phantom{200)}0007\phantom{8}\\200\overline{)1560}\\\phantom{200)}\underline{\phantom{}1400\phantom{}}\\\phantom{200)9}160\\\end{array}
Find closest multiple of 200 to 1560. We see that 7 \times 200 = 1400 is the nearest. Now subtract 1400 from 1560 to get reminder 160. Add 7 to quotient.
\text{Quotient: }7 \text{Reminder: }160
Since 160 is less than 200, stop the division. The reminder is 160. The topmost line 0007 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}