Evaluate
\frac{155}{21}\approx 7.380952381
Factor
\frac{5 \cdot 31}{3 \cdot 7} = 7\frac{8}{21} = 7.380952380952381
Share
Copied to clipboard
\begin{array}{l}\phantom{21)}\phantom{1}\\21\overline{)155}\\\end{array}
Use the 1^{st} digit 1 from dividend 155
\begin{array}{l}\phantom{21)}0\phantom{2}\\21\overline{)155}\\\end{array}
Since 1 is less than 21, use the next digit 5 from dividend 155 and add 0 to the quotient
\begin{array}{l}\phantom{21)}0\phantom{3}\\21\overline{)155}\\\end{array}
Use the 2^{nd} digit 5 from dividend 155
\begin{array}{l}\phantom{21)}00\phantom{4}\\21\overline{)155}\\\end{array}
Since 15 is less than 21, use the next digit 5 from dividend 155 and add 0 to the quotient
\begin{array}{l}\phantom{21)}00\phantom{5}\\21\overline{)155}\\\end{array}
Use the 3^{rd} digit 5 from dividend 155
\begin{array}{l}\phantom{21)}007\phantom{6}\\21\overline{)155}\\\phantom{21)}\underline{\phantom{}147\phantom{}}\\\phantom{21)99}8\\\end{array}
Find closest multiple of 21 to 155. We see that 7 \times 21 = 147 is the nearest. Now subtract 147 from 155 to get reminder 8. Add 7 to quotient.
\text{Quotient: }7 \text{Reminder: }8
Since 8 is less than 21, stop the division. The reminder is 8. The topmost line 007 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}