Solve for x
x=-\frac{77y}{18}+\frac{875}{3}
Solve for y
y=-\frac{18x}{77}+\frac{750}{11}
Graph
Share
Copied to clipboard
120x-35000=-\frac{1540}{3}y
Subtract \frac{1540}{3}y from both sides. Anything subtracted from zero gives its negation.
120x=-\frac{1540}{3}y+35000
Add 35000 to both sides.
120x=-\frac{1540y}{3}+35000
The equation is in standard form.
\frac{120x}{120}=\frac{-\frac{1540y}{3}+35000}{120}
Divide both sides by 120.
x=\frac{-\frac{1540y}{3}+35000}{120}
Dividing by 120 undoes the multiplication by 120.
x=-\frac{77y}{18}+\frac{875}{3}
Divide -\frac{1540y}{3}+35000 by 120.
\frac{1540}{3}y-35000=-120x
Subtract 120x from both sides. Anything subtracted from zero gives its negation.
\frac{1540}{3}y=-120x+35000
Add 35000 to both sides.
\frac{1540}{3}y=35000-120x
The equation is in standard form.
\frac{\frac{1540}{3}y}{\frac{1540}{3}}=\frac{35000-120x}{\frac{1540}{3}}
Divide both sides of the equation by \frac{1540}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{35000-120x}{\frac{1540}{3}}
Dividing by \frac{1540}{3} undoes the multiplication by \frac{1540}{3}.
y=-\frac{18x}{77}+\frac{750}{11}
Divide -120x+35000 by \frac{1540}{3} by multiplying -120x+35000 by the reciprocal of \frac{1540}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}