Solve for x
x = \frac{2240}{9} = 248\frac{8}{9} \approx 248.888888889
Graph
Share
Copied to clipboard
\frac{1540\times 10}{3}+120x-35000=0
Express \frac{1540}{3}\times 10 as a single fraction.
\frac{15400}{3}+120x-35000=0
Multiply 1540 and 10 to get 15400.
\frac{15400}{3}+120x-\frac{105000}{3}=0
Convert 35000 to fraction \frac{105000}{3}.
\frac{15400-105000}{3}+120x=0
Since \frac{15400}{3} and \frac{105000}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{89600}{3}+120x=0
Subtract 105000 from 15400 to get -89600.
120x=\frac{89600}{3}
Add \frac{89600}{3} to both sides. Anything plus zero gives itself.
x=\frac{\frac{89600}{3}}{120}
Divide both sides by 120.
x=\frac{89600}{3\times 120}
Express \frac{\frac{89600}{3}}{120} as a single fraction.
x=\frac{89600}{360}
Multiply 3 and 120 to get 360.
x=\frac{2240}{9}
Reduce the fraction \frac{89600}{360} to lowest terms by extracting and canceling out 40.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}