Evaluate
\frac{154}{27}\approx 5.703703704
Factor
\frac{2 \cdot 7 \cdot 11}{3 ^ {3}} = 5\frac{19}{27} = 5.703703703703703
Share
Copied to clipboard
\begin{array}{l}\phantom{27)}\phantom{1}\\27\overline{)154}\\\end{array}
Use the 1^{st} digit 1 from dividend 154
\begin{array}{l}\phantom{27)}0\phantom{2}\\27\overline{)154}\\\end{array}
Since 1 is less than 27, use the next digit 5 from dividend 154 and add 0 to the quotient
\begin{array}{l}\phantom{27)}0\phantom{3}\\27\overline{)154}\\\end{array}
Use the 2^{nd} digit 5 from dividend 154
\begin{array}{l}\phantom{27)}00\phantom{4}\\27\overline{)154}\\\end{array}
Since 15 is less than 27, use the next digit 4 from dividend 154 and add 0 to the quotient
\begin{array}{l}\phantom{27)}00\phantom{5}\\27\overline{)154}\\\end{array}
Use the 3^{rd} digit 4 from dividend 154
\begin{array}{l}\phantom{27)}005\phantom{6}\\27\overline{)154}\\\phantom{27)}\underline{\phantom{}135\phantom{}}\\\phantom{27)9}19\\\end{array}
Find closest multiple of 27 to 154. We see that 5 \times 27 = 135 is the nearest. Now subtract 135 from 154 to get reminder 19. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }19
Since 19 is less than 27, stop the division. The reminder is 19. The topmost line 005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}