Evaluate
\frac{1525}{868}\approx 1.756912442
Factor
\frac{5 ^ {2} \cdot 61}{2 ^ {2} \cdot 7 \cdot 31} = 1\frac{657}{868} = 1.7569124423963134
Share
Copied to clipboard
\begin{array}{l}\phantom{868)}\phantom{1}\\868\overline{)1525}\\\end{array}
Use the 1^{st} digit 1 from dividend 1525
\begin{array}{l}\phantom{868)}0\phantom{2}\\868\overline{)1525}\\\end{array}
Since 1 is less than 868, use the next digit 5 from dividend 1525 and add 0 to the quotient
\begin{array}{l}\phantom{868)}0\phantom{3}\\868\overline{)1525}\\\end{array}
Use the 2^{nd} digit 5 from dividend 1525
\begin{array}{l}\phantom{868)}00\phantom{4}\\868\overline{)1525}\\\end{array}
Since 15 is less than 868, use the next digit 2 from dividend 1525 and add 0 to the quotient
\begin{array}{l}\phantom{868)}00\phantom{5}\\868\overline{)1525}\\\end{array}
Use the 3^{rd} digit 2 from dividend 1525
\begin{array}{l}\phantom{868)}000\phantom{6}\\868\overline{)1525}\\\end{array}
Since 152 is less than 868, use the next digit 5 from dividend 1525 and add 0 to the quotient
\begin{array}{l}\phantom{868)}000\phantom{7}\\868\overline{)1525}\\\end{array}
Use the 4^{th} digit 5 from dividend 1525
\begin{array}{l}\phantom{868)}0001\phantom{8}\\868\overline{)1525}\\\phantom{868)}\underline{\phantom{9}868\phantom{}}\\\phantom{868)9}657\\\end{array}
Find closest multiple of 868 to 1525. We see that 1 \times 868 = 868 is the nearest. Now subtract 868 from 1525 to get reminder 657. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }657
Since 657 is less than 868, stop the division. The reminder is 657. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}